
! 1!

Dr Florence Cavalli               June 2017 
 
 

Final progress report for the Stephen Buttrum Brain Tumour 
Research Fellowship  

 
 
Summary of the outcome of my research project (2014-2016 fellowship postponed to 
2017 due to maternity leave) 
 
My prostdoctoral research project studies aimed at increasing our understanding of 
medulloblastoma (MB) tumours investigating characteristics within and between MB 
tumours. This work contributes to the foundation needed for further work for the 
discovery of new and more specific drugs and treatments. During my postdoctoral 
fellowship I focused on two main projects; investigating the (i) spatial heterogeneity and 
the (ii) intertumoural heterogeneity of primary MB tumours. 

 
1) Spatial heterogeneity 

 
This project is in collaboration with Dr A. Sorana Morrissy and Dr. Marc Remke. To 
determine the degree and clinical importance of the spatial heterogeneity, i.e differences 
between physically isolated biopsies of a single tumour, we analyzed multiple biopsied 
obtained for 9 MBs, 16 High Grade Gliomas (HGGs) and 10 Renal Cell Carcinomas 
(RCCs). 
 
First, we were able to show that MB subgrouping -the classification of the tumour to a 
WNT, SHH, Group3 or Group 4 subgroup- using gene expression data is stable 
regardless of the primary biopsy used to define the subgroup. This reinforces the clinical 
relevance and importance of sample subgrouping. However this was not the case for most 
of the Glioblastoma (GBM, part of HGGs) samples we analysed. Different biopsies of the 
same tumour could be classified to different GBM subtypes, showing a larger intra 
tumoural heterogeneity in GBM than in MB. 
 
We them explore the intratumoural heterogeneity at the genomic level somatic 
identifying copy number variants and mutation present in the different biopsies of the 
tumours. We found a range of heterogeneity levels among the samples, some samples 
being more homogeneous with somatic mutations and/or copy number variants present in 
all or most of the biopsies and others being more heterogeneous with many somatic 
mutations and/or copy number variants present only in a subset of biopsies or in a single 
biopsy coming from the tumours. We further show and proposed that at least two 
biopsies should be taken to estimate if a tumour is more likely more homogenous or 
heterogeneous.  
 
Next, we focused on genes suitable for targeted therapeutics and observed that somatic 
mutations that affect those genes demonstrated high levels of spatial heterogeneity.  
Therefore, the extent of the spatial heterogeneity of somatic mutations observed in our 
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cohort suggests that clinical trials of molecularly targeted therapy should first assess the 
ubiquitous distribution of the target. The lack of actionable driver mutations that are 
ubiquitously present across all regions of a given brain tumour suggests that 
monotherapies that target a single gene from a single biopsy are unlikely to have dramatic 
effects in terms of improving the lives of patients with brain tumours. 
 
Finally we observed that in MBs the expression of antigenes/genes that are the target of 
new immunotherapy that are currently being developed have a remarkable consistency of 
expression across multiregional biopsies. We concluded that this is a promising way to 
overcome the intratumoural heterogeneity observed in MB tumours. 
 
This study has been published in May 2017 in the Nature Genetics journal. The full 
article is attached at the end of this report. 
 

2) Intertumoural heterogeneity 
 
This project is in collaboration with Dr. Marc Remke. In the second project we aimed at 
further investigating the intertumoural heterogeneity (i.e between patient samples) 
especially the heterogeneity observed inside each of the four MB subgroups. Indeed, it is 
accepted that MB comprises four distinct molecular variants, and current clinical trials 
are stratifying patients using a combined biological and clinical risk stratification. 
However inside each subgroup, we observe tremendous clinical heterogeneity suggesting 
additional substructure. What remained unclear was the degree of biological substructure 
within subgroups. 
 
To investigate this, we generated a large dataset comprised of 763 primary MB samples 
for which we obtained both array-based gene expression and methylation data. Looking 
for group of samples more similar to each other inside each subgroups using either the 
gene expression or the methylation returned discordant results since different groups 
were obtained in function of the data type used. Since we wanted to use information 
present in both data types to discover clinically relevant groups, we took an integrative 
clustering approach to integrate the data. We therefore performed an integrative analysis 
of 763 primary MB samples with gene expression and genome-wide DNA methylation 
data with the Similarity Network Fusion method (SNF) to uncover the structure inside 
each MB subgroups. 
 
The integrative clustering faithfully recapitulated the core subgroups with a clear 
boundary between Group 3 and 4, that is not readily apparent by either expression or 
methylation alone. A subsequent analysis within each subgroup revealed varying degrees 
of biological heterogeneity. After integration of somatic copy number alterations and 
clinical features, we identified twelve medulloblastoma subtypes with clear clinical 
and molecular characteristics; two WNT, four SHH, three Group 3 and three 
Group 4 subtypes. These subtypes are important clinically since they present distinct 
clinical outcome and/or distinct molecular characteristics at the copy number levels or 
pathway level for example. Figure 1 present a summary of the keys clinical and 
cytogenetic events in each of the twelve MB subtypes we identified. 
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Figure 1: Graphical Summary of the 12 Medulloblastoma Subtypes 
Schematic representation of key clinical data, copy-number events, and relationship between the subtypes 
inside each of the four medulloblastoma subgroups. The percentages of patients presenting with metastases 
and the 5-year survival percentages are presented. The age groups are: infant 0–3 years, child >3–10 years, 
adolescent >10–17 years, and adult >17 years. 
 
We discovered two infants SHH subtypes with disparate outcomes and distinct copy 
number profiles, a childhood subtype with poor prognosis and an adult subtype. Notably, 
TP53 mutation is enriched and prognostic only in the childhood SHH subtype. The worst 
prognosis Group 3 subtype had MYC amplicons and isochromosome 17q without other 
focal aberrations. The other two have more favourable prognosis, one harbours similar 
focal copy number aberrations as the first one without high level MYC amplifications. 
Pathway analysis revealed subtype specific biological processes and transcriptional 
networks. For example, we observed an enrichment of developmental pathways in one of 
the two SHH infant subtypes.  
 
The identification of subtypes has significant biological and clinical implications. Several 
previously described focal copy-number alterations within MB subgroups as well as 
several arm-level events clearly segregate between subtypes. Our identification of unique 
cytogenetic aberrations that occur in concert, as well as specific biological pathways 
enriched within specific subtypes, will serve to inform creation of rational preclinical 
models that closely mirror the human diseases. Several of these aberrations are 
actionable, as defined by the availability of approved drugs, and largely restricted to 
subtypes. These results will therefore allow follow up studies to further explore the 
possible use and benefit of particular drugs on the different subtypes. Several subtypes, 
particularly in SHH and group 3, have clear and drastic clinical and prognostic 
differences, which will allow for more robust risk stratification in future clinical trials. 
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As current therapies result in significant long-term neurocognitive and neuroendocrine 
sequelae, the identification of distinct biological processes within each subgroup allows 
for more refinement in biological risk stratification as well as the possible identification 
of novel agents for future targeted therapies. 
 
This study has been published in June 2017 in the Cancer Cell journal. The full article is 
attached at the end of this report as well as a preview of our paper written by Drs Bavle 
and Parsons published in the same journal issue. 
 
Financial Statement 
 

Expenses' Amount'
Salary& $45,000&&
Computer&Supplies& $4,072.24&&
Hard&drives&& $927.76&
Total&& $50,000&&

 
 
  



! 5!

Bibliography 
 
Cavalli FMG*, Remke M*, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, 
Morrissy AS, Agnihotri S, Thompson YY, Kuzan-Fischer CM, Farooq H, Isaev K, Cho B-K, Kim S-K, 
Wang K-C, Lee JY, Grajkowska WA, Perek-Polnik M, Vasiljevic A, Faure-Conter C, Jouvet A, Giannini 
C, Nageswara Rao AA, Li KWK, Ng H-K, Eberhart CG, Pollack IF, Hamilton RL, Gillespie GY, Olson 
JM, Leary S, Weiss WA, Lach B, Chambless LB, Thompson RC, Cooper MK, Vibhakar R, Hauser P, van 
Veelen M-LC, Kros JM, French PJ, Shin Ra Y, Kumabe T, López-Aguilar E, Zitterbart K, Sterba J, 
Finocchiaro G, Massimino M, Van Meir EG, Osuka S, Shofuda T, Klekner A, Zollo M, Leonard JR, Rubin 
JB, Jabado N, Albrecht S, Mora J, Van Meter TE, Jung S, Moore AS, Hallahan AR, Chan JA, Tirapelli 
DPC, Carlotti CG, Fouladi M, Pimentel J, Faria CC, Saad, AG, Massimi L, Liau LM, Wheeler H, 
Nakamura H, Elbabaa SK, Perezpeña-Diazconti M, Ponce de León FC, Robinson S, Zapotocky M, 
Lassaletta A, Huang A, Hawkins CE, Tabori U, Bouffet E, Bartels U, Dirks P, Rutka JT, Bader GD, 
Reimand J, Goldenberg A, Ramaswamy V, Taylor MD (2017). Intertumoral heterogeneity 
within medulloblastoma subgroups, Cancer Cell 31(6): 737-754. *Shared first co-
authorship. 
 
Morrissy AS*, Cavalli FMG*, Remke M*, Ramaswamy V, Shih DJH, Holgado BL, Farooq H, Donovan 
LK, Garzia L, Agnihotri S, Kiehna EN, Mercier E, Mayoh C, Papillon-Cavanagh S, Nikbakht H, Gayden T, 
Torchia J, Picard D, Merino DM, Vladoiu M, Luu B, Wu X, Daniels C, Horswell S, Thompson YY, 
Hovestadt V, Northcott PA, Jones DTW, Peacock J, Wang X, Mack SC, Reimand J, Albrecht S, 
Fontebasso AM, Thiessen N, Li Y, Schein JE, Lee D, Carlsen R, Mayo M, Tse K, Tam A, Dhalla N, Ally 
A, Chuah E, Cheng Y, Plettner P, Li HI, Corbett RD, Wong T, Long W, Loukides J, Buczkowicz P, 
Hawkins CE, Tabori U, Rood BR, Myseros JS, Packer RJ, Korshunov A, Lichter P, Kool M, Pfister SM, 
Schüller U, Dirks P, Huang A, Bouffet Eric, Rutka JT, Bader GD, Swanton C, Ma Y, Moore RA, Mungall 
AJ,  Majewski J, Jones SJM, Das S, Malkin D, Jabado N, Marra MA, Taylor MD (2017). Spatial 
heterogeneity in medulloblastoma, Nature Genetics 49(5): 780-788. *Shared first co-
authorship. 
 
 
Oral Presentation 
DSCB Trainee seminar, Toronto, ON, Canada, September 2016. 
Intertumoral heterogeneity within medulloblastoma subgroups 

 
Poster presentations 

Forum de la Recherche en Cancérologie Auvergne-Rhône-Alpes, Lyon, France, April 
2017  
Integrative analysis reveals novel subtypes of medulloblastoma subgroups 
GFCC Cancer Research Day, Toronto, ON, Canada, January 2017.  
Integrative analysis reveals novel subtypes of medulloblastoma subgroups 

Best Poster Presentation –Research Fellow category 
Beyond the Genome: Cancer genomics, Boston, MA, USA, October 2014. 
Relative Spatial Homogeneity in embryonic brain tumors showed by multi 
layer genomic analysis. 
 
 



780 VOLUME 49 | NUMBER 5 | MAY 2017 NATURE GENETICS

L E T T E R S

Spatial heterogeneity of transcriptional and genetic markers 
between physically isolated biopsies of a single tumor poses 
major barriers to the identification of biomarkers and the 
development of targeted therapies that will be effective against 
the entire tumor. We analyzed the spatial heterogeneity of 
multiregional biopsies from 35 patients, using a combination of 
transcriptomic and genomic profiles. Medulloblastomas (MBs), 
but not high-grade gliomas (HGGs), demonstrated spatially 
homogeneous transcriptomes, which allowed for accurate 
subgrouping of tumors from a single biopsy. Conversely, 
somatic mutations that affect genes suitable for targeted 
therapeutics demonstrated high levels of spatial heterogeneity 
in MB, malignant glioma, and renal cell carcinoma (RCC). 
Actionable targets found in a single MB biopsy were seldom 
clonal across the entire tumor, which brings the efficacy of 
monotherapies against a single target into question. Clinical 
trials of targeted therapies for MB should first ensure the 
spatially ubiquitous nature of the target mutation.

Many cancer types show considerable intertumoral heterogeneity 
between individuals1–3. Molecular biomarkers are intended to (i) tai-
lor treatment intensities4,5, (ii) define oncogenic drivers for targeted 
therapies5–7, and (iii) identify diagnostic mutations (e.g., SMARCB1 
mutations in atypical teratoid/rhabdoid tumors)8. Currently, clinical 
diagnoses are based on single biopsies, with the assumption of spa-
tial homogeneity across tumors; however, spatial heterogeneity could 
lead to erroneous tumor classification or the selection of therapies 

against targets that are present only in a locally restricted portion of 
the tumor. These implications were recently highlighted in late-stage 
RCC9,10, with highly divergent mutational profiles affecting MTOR 
and TP53, as well as demonstrating good and poor prognostic gene 
signatures in multiregion biopsies from the same tumor10,11.

To determine the degree and clinical importance of spatial hetero-
geneity in MB, we performed multiregional biopsies and compared 
gene expression profiles, DNA copy-number alterations (CNAs), and 
somatic mutations. Our cohort included 9 primary MBs, 16 HGGs 
(10 with gene expression only12), and 10 RCCs10, with 4–11 spatially 
distinct biopsies from each (median: 6). An overview of the data types 
available for each patient is presented in Supplementary Table 1a and 
Supplementary Figure 1.

Glioblastoma13 and MB14 each comprise four distinct molecular 
subgroups that are discerned through analysis of transcriptional data. 
Unsupervised hierarchical clustering (HCL) of expression data has 
shown that MB biopsies form tight clusters apart from single sam-
ples15–20 (8/8; Fig. 1a, Supplementary Fig. 2a,b), whereas in HGGs 
(3/3) and RCCs (8/9), multiregion biopsies from single individuals 
clustered apart when combined with single samples (Supplementary  
Fig. 2c–f). Overall, on the basis of the s.d. of expression, intertumoral 
differences were greater than intratumoral heterogeneity in each 
tumor type (Fig. 1b). Subtype prediction with Predictive Analysis of 
Microarrays (PAM) showed that 21% (13/63) of glioblastoma multiregion  
samples diverged from the most commonly observed subtype for each 
patient, compared with only 2% (1/52) of MB biopsies (P = 0.003;  
Fig. 1c–e, Supplementary Figs. 3–6). When we considered only  
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biopsies with subgroup predictions of 100% confidence, we found that 
all MB tumors had concordant subgroup calls between multiple biop-
sies (9/9), compared with only 55% of glioblastomas (6/11; P = 0.038;  
Fig. 1e). We conclude that MB can be robustly and reliably sub-
grouped from only a single biopsy, but glioblastoma cannot.

We identified somatic CNAs by using a custom pipeline based on the 
TITAN algorithm21, which is robust to high levels of normal contami-
nation (Online Methods). Regions of CNA were identified in all three 
tumor types (Fig. 2a, Supplementary Figs. 7 and 8, Supplementary 
Table 1b,c), and unsupervised HCL of clonal segments showed tight 

clustering of individual biopsies in the cohort across all tumor enti-
ties (Fig. 2b, Supplementary Fig. 9). CNA-derived measurements of 
spatial heterogeneity highlighted the variance between individuals for 
each tumor type (Fig. 2c). Somatic single-nucleotide variants (SNVs) 
and insertions/deletions (indels) recapitulated a similar pattern  
of spatial heterogeneity across tumors (Fig. 2d, Supplementary  
Table 1d). Overall, on the basis of the mutation and CNA data, none 
of the three tumor types comprised only homogeneous or heterogene-
ous tumors; rather, each had a repertoire of tumors residing along a 
continuum of genetic heterogeneity.
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Figure 1 Medulloblastomas, but not glioblastomas, show reliable transcriptome-based subgroup prediction. (a) Unsupervised HCL using 1,000 high-
s.d. transcripts of eight multiregion MB samples combined with single biopsies (n = 334) demonstrates tight clustering of matched multiregion  
MB samples across subgroups. (b) The top 2,000 s.d.-transcript values determined on intra- and intertumor levels in MB, HGG, and RCC samples. 
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This genomic complexity results from a process of clonal evolu-
tion whereby the successive acquisition of mutations and CNAs gen-
erates genetically related subpopulations of cells or lineages within 
each tumor. We integrated CNA and mutational data using the 
EXPANDS algorithm22, to infer the cellular lineage composition in 
each biopsy. EXPANDS detects multiple genetically distinct coexist-
ing subpopulations of cells and allows phylogenetic reconstruction 
of their evolutionary relationships. Figure 3a, which describes the 
spatial distribution of genetically distinct subpopulations throughout 
a tumor, illustrates the clonal intermixing detected in many samples 
of the cohort (Fig. 3b–d, Supplementary Fig. 10, Supplementary 
Table 1e,f). Many tumor biopsies had a major clone (i.e., a genotype 
present in >70% of tumor cells) that was also detected in a minority 

of cells in other biopsies from the same tumor (i.e., subclonal) or that 
was absent in other biopsies (for example, biopsies 3, 5, and 6 from 
tumor RCC7 were genetically similar to some cells in biopsy 4 (4a), 
but not all cells (4b clustered separately); Fig. 3c). In some tumors, 
individual biopsies contained two or more cell lineages that inde-
pendently accumulated distinct repertoires of mutations not found 
elsewhere in the tumor (e.g., HGG2 biopsies 1 and 5; Fig. 3c). The 
presence of multiple genetically distinct cellular lineages within single 
biopsies has previously been linked to poor prognosis and treatment 
response across a variety of cancer types23.

This surprising but common pattern of major genetic clones in one 
biopsy that are subclonal or absent in spatially distinct locations in the 
same tumor prompted us to investigate observable mutation clonality 
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Figure 3 Spatial intermixing of clonal lineages. (a) Example illustration of a tumor with four clonal lineages that are spatially dispersed (color-coded  
in blue, green, pink, and purple), demonstrating how data from three biopsies can be used to build a typical biopsy-level phylogenetic tree as well  
as a subpopulation-level tree that reflects intermixing of the three detected genetic lineages. Branch tips are color-coded according to biopsy number, 
and labeled according to biopsy number (1, 2, 3) and clonal lineage (a, b, c). Branch colors correspond to the cellular genotype; black squares indicate 
major cellular lineages (>70% of tumor cells in the biopsy, scaled by the largest detectable population). Note that the number of biopsies may  
not be sufficient to ‘discover’ all distinct clonal lineages (e.g., purple clone). (b) Biopsy-level trees of three representative tumors: HGG2, MB7, and 
RCC7. (c) Subpopulation-level trees showing that some cellular lineages have high similarity to lineages in other biopsies, thus suggesting spatial 
intermixing (e.g., MB7 biopsies 1, 2, and 3; RCC7 biopsy 4). Conversely, some biopsies harbored more than one distinct lineage (e.g., HGG2 biopsy 5). 
(d) Variant allele frequencies (VAFs) of mutations are shown along with CNAs exclusive to or shared by pairs of biopsies or subpopulations. VAF scatter 
plots have a smoothed color density; black dots represent individual mutations. CNA events (triangles) are shown (with some jitter) if they were  
present in either compartment, or shared.
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across biopsies, as clonality is a key requirement of clinically action-
able therapeutic targets24. We classified mutations into clonal and sub-
clonal populations (Supplementary Fig. 11, Supplementary Table 1g)  
and determined whether the status of the subset of damaging clonal 
mutations changed between spatially separated tumor biopsies.  
In nearly all tumors we found a predominance of clonal mutations 
that were subclonal or completely absent in additional biopsies 
(Fig. 4a, Supplementary Fig. 12; validation set of seven mutations 
with a 96% validation rate across biopsies; Supplementary Fig. 13, 
Supplementary Table 1h). This observation held when we consid-
ered only driver events25–28 (Fig. 4b, Supplementary Table 1i–k).  
We predict that monotherapies against a single target identified in a 
single biopsy are unlikely to show dramatic clinical effects, as targets 
are not ubiquitous; this would leave untargeted clones in unsampled 
portions of the tumor free to survive and repopulate the tumor.

When the goal of a cancer therapy is improved patient treatment, 
the clinically relevant question is whether the observed level of 
genomic spatial heterogeneity affects actionable or driver alterations. 
As proof of concept, we focused on a set of genes with known roles in 
cancer initiation and/or progression29, or with defined drug interac-
tions30. These genes are enriched in relevant or actionable targets in a 

manner that is unbiased toward either of the cancer types we included 
(Supplementary Table 1l,m). When we investigated the spectrum of 
SNVs, indels, and CNAs affecting these genes (Supplementary Figs. 14  
and 15), we found a remarkable variety of patterns across tumors, 
including cases with only a small set of shared alterations across biop-
sies but with many events present in single biopsies (e.g., MET ampli-
fication in HGG4); homogeneous tumors with many shared actionable 
events (e.g., HGG3); cases without ubiquitous actionable targets, 
which may require multiagent targeted therapeutics (e.g., MB6);  
tumors that lacked vulnerability to any of the considered actionable 
targets in a subset of biopsies (e.g., MB7); and tumors with alterations 
that may predict resistance (e.g., TP53 compound loss and somatic 
mutation in RCC7).

Considering the full set of identified actionable mutations per 
tumor across all biopsies, we calculate that in each tumor entity, an 
average of at least five biopsies is required to provide an 80% chance 
of identifying at least 80% of these alterations. If these measures were 
reduced to 50%, sampling of at least two biopsies would be required, 
or as many as four for highly heterogeneous tumors (Fig. 5a). This is 
probably an underestimation, as the detection of actionable mutations 
does not plateau in most patients (Supplementary Fig. 16).
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Figure 4 Genetically distinct clonal lineages yield ON/OFF mutation patterns between spatially separated biopsies. (a) Nonsynonymous mutations 
binned into five categories: clonal in all biopsies (clonal); clonal in some biopsies and subclonal in others (clonal/subclonal); clonal in some biopsies 
and completely absent in others (clonal/absent); clonal in some biopsies, and subclonal or absent in others (clonal/subclonal/absent); and never 
detected as clonal (non-clonal). Top, illustration of the most favorable clinical scenario, in which most mutations are clonal across all biopsies (left), 
and the worst-case scenario, in which mutations are clonal in some biopsies but absent in others (right). Bottom, mutation patterns follow a worst-case 
scenario across tumor types. Tumor-specific polygons on radial plots indicate the proportion of mutations on each of the five axes, with polygon centers 
marked by black circles. (b) The proportion of driver mutations/indels (top) or CNAs (bottom) that are found in every biopsy of a given tumor (i.e., trunk 
events) when both clonal and subclonal or only clonal driver events are considered. The absolute numbers are shown above the bars.
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Up-front profiling of numerous tumor regions to identify the full 
repertoire of actionable targets is neither practical nor likely, given 
the amount of sequencing required; thus we focused on maximizing 
the information derived from a minimal set of biopsies. Specifically, 
we wanted to determine how well we could predict the frequency of 
individual mutations across a tumor with an increasing number of 
biopsies, noting that prediction accuracy for mutations identified in a 
single fraction would be high only in very homogeneous tumors. We 
empirically determined the frequency of each alteration, considering 
all possible pairs of an increasing number of biopsies, and compared 
this observed quantity to the known frequency of the alteration in all 
biopsies; the difference between these values was the inference error 
of mutation frequency resulting from an insufficient number of biop-
sies from genetically heterogeneous tumors (Supplementary Fig. 17). 
Using a 10% error rate as an acceptable threshold, we calculated for 
each tumor the number of observed mutation frequencies that fell 
within this range (i.e., accuracy). As expected, we found that accuracy 
improved with increasing numbers of biopsies, and also that brain 
tumors fall into two patterns. The first comprises more homogeneous 
tumors, which have fairly high prediction accuracy even with a low 
number of biopsies, and the second comprises more heterogeneous 
tumors for which multiple biopsies are required to ensure an accurate 

determination of mutation frequency (Fig. 5b). In our cohort of MBs 
and glioblastomas, considering just two biopsies per tumor enabled 
the distinction of tumors with high versus low genetic heterogene-
ity, with high specificity especially for highly heterogeneous tumors  
(Fig. 5c, Supplementary Fig. 18).

Although spatial heterogeneity is clearly a barrier to highly  
effective therapeutics against an entire primary tumor, the extent 
of heterogeneity between primary and recurrent MB31 is many fold 
greater (Fig. 6a, Supplementary Fig. 19). This vast discordance  
at relapse is therefore unlikely to be secondary solely to inadequate 
spatial sampling of the therapeutically naive primary tumor. In glio-
mas32, the recurrent disease resembles the primary tumor more 
closely, and only in rare cases diverges to the extent seen in MB, pos-
sibly as a result of less complete success in the resection of this more 
diffuse and infiltrating tumor. MB is known to recur from very rare 
populations of cells31; thus, therapeutic approaches that can eradi-
cate such cellular lineages despite their low prevalence in the primary 
tumor are severely needed.

Targeted cancer immunotherapy is based on the presence of  
tumor-specific cell-surface antigens, as opposed to cell-autonomous 
somatic mutations. We examined the expression of the antigens/genes 
for which chimeric antigen receptor T cells or monoclonal antibodies  
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Figure 5 Quantification of variable genetic heterogeneity across tumor entities. (a) Our analysis of all mutated genes (from the list of actionable targets) 
identified in each tumor across all biopsies suggests that an average of five biopsies of an individual tumor is required to provide an 80% likelihood of 
recovering 80% of the known mutated genes (left). At least two biopsies are required to achieve a 50% likelihood of recovering 50% of mutated genes 
(right). (b) The likelihood of correctly inferring the frequency of a mutation in a whole tumor depends on the number of biopsies sampled, and whether 
the tumor is more or less genetically homogeneous. The accuracy of frequency prediction for brain tumors shows a bimodal pattern, with low-genetic-
variance tumors having higher accuracy (>0.6) even with few biopsies, whereas at least five biopsies are required to achieve the same confidence in 
high-genetic-variance tumors (HGG and MB). RCCs additionally show an intermediate pattern. Accuracy was measured as the proportion of times that a 
gene’s observed frequency in a selection of biopsies was within 10% of the known frequency across all biopsies. Lines represent a Loess fit to the points 
per tumor; gray shading indicates the 95% confidence interval. (c) Given a random selection of two biopsies, we ranked patients on the basis of the 
proportion of mutated genes (from the actionable target list) present in both biopsies. Patients with genetically heterogeneous tumors had median values 
< 0.2. Points represent the median value of all possible biopsy pairs per patient, and are color-coded according to the key in a.
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already exist33–43, and we observed remarkable consistency of expres-
sion across multiregional biopsies, which contrasts sharply with  
the heterogeneity of somatic mutations across fractions in the same 
set of tumors. This was the case in all MBs examined, including  
those with high levels of genetic heterogeneity and for which  
targeted therapy would be problematic33–43 (Fig. 6b, Supplementary 
Fig. 20). The homogeneity of the transcriptome versus the heteroge-
neity of somatic mutations in our MB cohort suggests that targeted 
immunotherapeutic approaches could potentially overcome the  
hurdle of spatial genetic heterogeneity.

The vast majority of patients with brain tumors have their tumor 
classified from a single tumor biopsy, which is potentially adequate for 
MB, but not for glioblastoma. The extent of the spatial heterogeneity 
of somatic mutations observed in our cohort suggests that clinical tri-
als of molecularly targeted therapy should first assess the ubiquitous 
distribution of the target. The lack of clonal actionable driver mutations 
that are ubiquitously present across all regions of a given brain tumor 
suggests that monotherapies that target a single gene from a single 
biopsy are unlikely to have dramatic effects in terms of improving the 
lives of patients with brain tumors.

URLs. Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/; 
European Genome-phenome Archive, https://www.ebi.ac.uk/ega/.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 6 Genetic heterogeneity at recurrence greatly exceeds spatial heterogeneity in MB. (a) The genetic concordance of pre- versus post-therapy 
biopsies (data from ref. 31) was an order of magnitude lower than the up-front genetic spatial heterogeneity in MB samples (P < 10−16, Welch two-
sample t-test; n = 14 primary (Pri)–recurrence (Rec) pairs; n = 158 spatial comparisons from seven tumors). HGGs in our cohort showed a similar 
overall distribution of spatial heterogeneity (n = 92 comparisons from four tumors), and were not dramatically different compared with the low 
concordance of low-grade gliomas (LGGs) to HGGs post-therapy41 (n = 23 glioma primary–recurrence pairs; data from ref. 32). One LGG relapse to 
HGG exhibited post-therapeutic genetic concordance values on par with those for MBs (P < 10−4, Welch two-sample t-test; n = 12 primary–recurrence 
comparisons from patient 17 of ref. 32; n = 9 spatial comparisons). Concordance was measured as the proportion of clonal somatic mutations in 
common between a pair of biopsies, given the total number of clonal somatic mutations in the two samples. The width of the bean plots scales with the 
number of measurements with a similar y-value, showing data distribution. Thin horizontal lines indicate individual observations; multiple observations 
with the same value were added together to form wider lines. Thick horizontal bars indicate averages. (b) Low expression variance was observed across 
multiregion biopsies of cell-surface molecules with immunotherapies currently in clinical trials. This indicates that tumors with high genetic spatial 
heterogeneity may respond well to chimeric antigen receptor T cell or antibody-based therapy. Green points mark the expression of target genes in 
individual biopsies; horizontal lines indicate the median expression and the 25th and 75th percentiles of expression per tumor.
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ONLINE METHODS
Patients and samples. Multiregion tumor biopsies and clinical data were 
gathered for 35 tumors (9 primary medulloblastomas, 16 high-grade gliomas  
(10 with gene expression only12), and 10 renal cell carcinomas10); peripheral 
blood samples were included as germline controls for all cases with exome 
sequencing. All multiregion biopsies for unpublished cases were obtained  
in situ during tumor resection, by mimicking the previous sample-preparation 
conditions of published cases to the best of our knowledge. Medulloblastoma 
tumors are similar in size to glioblastomas, with an average diameter of 
8–12 cm; biopsies were taken from regions as far apart as possible by the 
surgeon. Owing to their localization in the abdomen, renal cancers may be 
larger in size. Detailed information on multiregion tumor samples is pro-
vided in Supplementary Table 1a and Supplementary Figure 1. All patient 
material and clinical information was obtained after informed consent had 
been received and was approved by the institutional review boards of the 
contributing institutions. DNA and RNA extractions were performed as previ-
ously described16. RNA quality was assessed on a 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA). Only high-quality RNA (RNA integrity 
number  7) was included for further study.

Gene expression profiling. We carried out expression profiling on eight MB 
and three HGG multiregion biopsies, with a total of 72 biopsies and a median 
number of 6 multiregion biopsies per primary tumor (range: 4–9). We used 
Affymetrix HU133 Plus 2.0 microarrays for HGG samples, and Affymetrix 
Gene 1.1 ST arrays (Affymetrix, Santa Clara, CA) for MB samples, to ensure 
that these multiregion biopsies could be compared to published data sets15–17,20.  
Microarrays were processed according to the manufacturer’s guidelines. Raw 
data were normalized with a transcript-level robust multi-array average (RMA) 
algorithm44, and subsequently clustered by unsupervised HCL (Pearson’s  
dissimilarity – average linkage) in Partek Genomics Suite. The molecular clas-
sification of the multiregion biopsy samples was done with the class-prediction 
algorithm PAM45, as implemented in the pamr package (v. 1.51). Markers for 
glioblastoma (GBM) subtypes were obtained from the Verhaak classifier13. We 
note that classification was done for the GBM samples only, thus excluding 
HGG1. Subgroup-specific markers for MB were identified on the basis of one-
way analysis of variance with multiple hypothesis correction by the Bonferroni 
method in previously published data sets with known subgroup affiliation46. 
On the basis of the misclassification error values in core GBM13 and MB15–17 
training data sets (Supplementary Fig. 6), we chose threshold values of 1.75 
and 1 for multiregion samples from published12 and unpublished GBM and 
MB patient data, respectively. The published GBM data set12 was quantile-
normalized with Partek Genomics Suite. Predicted subtypes or subgroups with 
confidence probabilities higher than established thresholds46 were considered 
bona fide subgroup assignments. Samples with less than 500 ng of remain-
ing RNA were analyzed with NanoString as previously described46. MB3 was 
analyzed exclusively with NanoString, as only limited amounts of RNA were 
available for all multiregion biopsies. NanoString counts were normalized 
to the three housekeeping genes (GAPDH, ACTB and LDHA). We prepared 
dot plots and principal component analyses based on normalized NanoString 
calls using the R statistical environment (v2.15.1). Pearson correlation was 
used to determine the correlation of marker gene expression for each biopsy 
per patient (intratumor comparison) and between each biopsy and all others 
samples from different patients of the same subgroups (intertumor compari-
son). The Wilcoxon rank-sum test was used to infer differences in intra- and 
intertumor marker gene expression in a subgroup-specific fashion.

A previously published data set of nine multiregion RCC samples9 profiled 
with the Affymetrix Human Gene 1.0 ST array was included in the analysis, as 
well as two RCC data sets18,19 with 53 and 29 single RCC samples, respectively. 
The RCC expression data sets were processed together in R (v3.1.1) with the 
oligo package (rma normalization), and the combat package was used for 
batch-effect correction. Unsupervised HCL (Pearson’s dissimilarity – average 
linkage) was carried out with the Partek Genomics Suite.

Whole-exome sequencing. DNA libraries (MB1–5) from multiregion samples 
were exome-captured with Agilent SureSelect V5+UTR probes and subjected 
to eight cycles of PCR, and then paired-end 75-base reads were sequenced over 
two lanes on an Illumina HiSeq 2000 instrument per pool of six libraries. Reads 

were aligned to the human reference genome hg19a with Burrows–Wheeler 
Aligner (BWA) (version 0.5.7)47. Two lanes were merged with duplicates 
marked with Picard Tools (version 1.71). Additional samples (MB6–7 and 
HGG1–5) were subjected to paired-end library construction using Illumina’s 
Nextera Rapid Capture Exome kit. Captured exome DNA sequences were then 
sequenced with Illumina HiSeq 2000 (rapid-run mode) for 100-bp paired-end 
reads. We used the FASTX toolkit to remove adaptor sequences and to trim 
low-quality reads. Quality trimmed reads were then aligned to the human 
reference genome (hg19) using BWA (version 0.5.9)47. We used Genome 
Analysis Toolkit (GATK)48 for indel realignment. We marked duplicate reads 
with Picard so we could exclude them further in our analysis.

Somatic SNV detection and filtering. SNVs were called exome-wide with 
SAMtools mpileup (v0.1.7), and indels were called with VarScan. We carried 
out stringent filtering requiring no reads in the germline sample supporting 
an SNV to ensure conservative selection of somatic events. Variants with suffi-
cient coverage ( 10) were further annotated with Annovar49 (table_annovar.pl;  
RefSeq gene annotations, amino acid change annotation, SIFT, PolyPhen, LRT, 
and MutationTaster scores, PhyloP and GERP++ conservation scores, dbSNP 
identifiers, 1000 Genomes Project allele frequencies, NHLBI-ESP 6500 exome 
project allele frequencies).

Mutation validation. We validated a subset of somatic mutations using 
PCR amplification from all tumor biopsies, matched germline, and a healthy 
control sample. We amplified regions of interest from genomic DNA with 
primers flanking each SNV (Supplementary Table 1h,n), using Q5 High-
Fidelity DNA polymerase (NEB). PCR specificity was determined by agar-
ose gel electrophoresis followed by gel extraction of specific bands using a 
Gel Extraction/PCR clean-up kit (Qiagen) according to the manufacturer’s 
instructions. Purified amplicons were sequenced by Sanger sequencing, and 
traces were reviewed manually for the expected presence or absence of the 
mutated base.

Droplet digital PCR. For the validation and quantification of the frequency 
of the PIK3CA SNV detected in MB3, we used droplet digital PCR (ddPCR),  
as Sanger traces were of poor quality in the region of interest. We used genomic 
DNA from six spatially distinct biopsies from MB3, as well as matched  
germline and a healthy donor control, in the assay. We validated the PIK3CA 
mutation (chr 3:178936091 G>A) by using the PrimePCR ddPCR mutation 
assay kit, PIK3CA p.E545K, human (Bio-Rad; dHsaCP2000075 (mutant, 
FAM) and dHsaCP2000076 (wild-type, VIC)), according to the manufacturer’s 
instructions. Fluorescence measurement with a QX100 ddPCR droplet reader 
(Bio-Rad) was used to detect the presence of mutant and wild-type alleles. 
QuantaSoft Analysis software (Bio-Rad) was used in the quantification.

Copy-number analysis. TITAN21 estimates the cellular prevalence of tumor 
cell populations (lineages) on the basis of a user-defined number of clonal 
clusters, and user-defined ploidy estimation. Thus, we carried out 20 runs of 
TITAN for each exome, with cluster numbers 1–10 (representing one clonal 
lineage through to ten coexisting clonal lineages with distinct genotypes), 
and ploidy set to either 2 or 4. Copy-number segments from the 20 parameter 
combinations were analyzed and merged into larger segments if they were on 
the same chromosome arm, were <10 Mb apart, and had the same state (loss 
or gain). We compared merged results from each of the 20 parameter combi-
nations for each biopsy in order to select the optimal parameter combination 
as the highest-scoring, considering the following criteria:

# maximize the largest contig size
# maximize the median contig size
# minimize the number of contigs
# minimize the number of clonal clusters

The parameter combination with the largest x value was selected as optimal: 

x L M M T C M(( * ) * ( / ) ( / ) ( /( ) ))/ /2 9 2 910 1 1 1 10

where L is the largest contig size (Gb), M is the median contig size (Gb), T is 
the total number of contigs, and C is the number of clonal clusters.
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We next assessed the prevalence of copy-number segments (loss or gain) 
identified in the best parameter combination of a unique biopsy (i.e., target 
segments), using either all segments or clonal segments only (logratio  |0.2|). 
A target segment was considered as found in another biopsy from the same 
tumor if any of the 20 parameter combinations contained a segment with the 
same state (loss or gain), and whose span had a minimum reciprocal overlap 
of at least 70% with the target segment.

Concordance of driver regions of loss and gain in the RCC tumor cohort 
was performed for our calls and the published data9. With our computational 
approach, we achieved 97% concordance compared with the manual cura-
tion performed previously9, indicating that this method is specific and sen-
sitive despite the high level of normal cell contamination in these tumors. 
Conversely, compared to our results for the subset of copy-number gains and 
losses identified in ref. 9, the manual curation showed 89% concordance to the 
TITAN pipeline, indicating that our approach is more sensitive, and that the 
homogeneity of certain copy-number driver events may be greater than previ-
ously estimated (Supplementary Table 1c). Finally, our approach is applicable 
genome-wide and across tumor types in a highly parallel fashion.

SNV classification using mclust. We classified variant allele frequencies 
(VAFs) of somatic SNVs into distinct clusters using the R package mclust50, 
which uses finite mixture estimation via iterative expectation maximization 
steps and the Bayesian information criterion. Each cluster is manually catego-
rized as ‘homozygous’, ‘clonal’, or ‘subclonal’, depending on the cluster VAF and 
the uncertainty separating it from the next cluster, and taking into account 
the biopsy tumor cell content value reported by TITAN. Multiple subclonal 
populations are numbered sequentially, starting with the most highly prevalent 
population. Clonal and subclonal mutation details per biopsy are summarized 
in Supplementary Table 1d,g.

Phylogenetic reconstruction from combined SNV and CNA data. We com-
bined copy number and loss-of-heterozygosity (LOH) information derived 
from TITAN (including the clonal and subclonal events identified in the best 
parameter combination run for each biopsy), as well as somatic mutations and 
SNPs in areas of LOH, to infer tumor phylogenies using EXPANDS22. We ran 
EXPANDS v1.7.2 with the runExPANdS function. All parameters were set to 
default, with the exception of maxScore, which was lowered to 1.5 to reduce 
the false positive rate of subpopulation detection. Only subpopulations with 
a minimum size (cellular frequency) of 0.1 were considered. Mutations that 
could not be assigned to a high-confidence subpopulation were discarded, 
so that no ambiguous assignments were made. In addition, ambiguous sub-
populations (i.e., groups of mutations and copy-number events) were dropped 
from the analysis. Mutations were assigned to all nested subpopulations (i.e., 
if a mutation was found in a subpopulation of cells at a high frequency of 0.8, 
it was also assigned to ‘daughter’ subpopulations of, for instance, frequency 
0.5), to report the assignment of every mutation to all detected subpopulations 
in all biopsies of the tumor (assuming that the mutation could be assigned 
unambiguously as mentioned above; Supplementary Table 1f).

Phylogenetic relationships between the subpopulations inferred by the 
EXPANDS algorithm in all biopsies per patient were generated using both SNV 
and copy-number segments. The Manhattan distance metric was used to calculate 
pairwise distances between all pairs of biopsies on the basis of these data, and a 
complete linkage HCL was performed to generate phylogenies. Germline-rooted 
trees were generated with the as.phylo R function from the ape package.

Error inference of actionable genetic alterations. In order to analyze genetic 
heterogeneity affecting actionable and putative driver genes in a way that was 
unbiased toward any of the tumor types, we opted to use general lists of known 
cancer drivers and druggable targets. Sets of genes known to be drivers in 
GBM, MB, and RCC tumors come from studies of different cohort sizes, with 
sometimes unknown subgroup affiliations, and thus are not equally compre-
hensive. To overcome this, we used a list of genes of interest that included 
putative driver genes found in the Cancer Gene Census database29 (n = 572) 
and actionable genes from the Drug-Gene Interaction Database30 (n = 426 
genes) (Supplementary Table 1l,m).

Oncoprint plots (R package ComplexHeatmap v1.6.0) were built for the 
combination list of these genes for all tumors, using (a) clonal mutations and 

indels and (b) clonal mutations and indels plus high-level CNAs (>4 copies 
gained; homozygous loss). A manual review of the results showed that the 
absence of clonal somatic mutations in subsets of biopsies is not explained 
by concordant copy-number loss. Because not all biopsies had copy-number 
data, we carried out further analyses using results from strategy (a) in order 
to maximize the number of usable biopsies per tumor.

Driver event lists. The MB CNA driver events listed in Supplementary  
Table 1i,j and Figure 4b were taken mainly from Shih et al.27, with a subset of 
the mostly highly recurrent genes listed in Northcott et al.25. The HGG chro-
mosome arm and recurrent driver gene events were retrieved from Tables 1  
and 2 of ref. 26. RCC chromosome arm and gene-level driver events were 
retrieved from Supplementary Figure 2 (threshold FDR q-value < 10−15) and 
Table S4 (q-value threshold: 0.05) of the ccRCC TCGA paper28. The cancer cell 
fraction values presented in Supplementary Figure 10b for driver mutations 
were calculated as previously described51: 

CCF VAF*(1/Purity)(CN*Purity +2(1 Purity))

where CCF is the cancer cell fraction, VAF is the variant allele frequency, 
CN is the copy number at the mutation, and Purity is the tumor purity as 
calculated by EXPANDS.

Accuracy of mutation-frequency detection. We calculated the inferred error 
of the prevalence of each mutation across biopsies by using a subsampling 
approach. In each tumor, given a subset of biopsies from 1 to n (where n is 
the total number of biopsies per tumor), we calculated the frequency of each 
identified mutation in the biopsies sampled as fo. We subtracted this value 
from the ‘ground truth’ expected frequency for that mutation across all n 
biopsies (fe). When the observed and expected values were identical, then the 
inferred error (fe – fo) was 0. In the majority of tumors, there is a predomi-
nance of genes with mutations in single biopsies, leading to negative values of 
error for many genes, as the frequency of the mutation is often overestimated 
(Supplementary Fig. 17). In contrast, genes that are present in all but one or 
two biopsies will often have an error value greater than 0, as their frequency 
can be underestimated.

The likelihood of being within 0.1 of 0 (i.e., close to perfect accuracy, given 
the data from all biopsies) is calculated as the proportion of genes at each 
sampling of 1:n biopsies where the error rate was within those bounds. For 
instance, we sampled all possible combinations of a certain number of biopsies 
from the total number of biopsies, and in each case calculated the inferred 
error of each detected mutation’s prevalence. The proportion of the total set 
of error values < |0.1| represented the likelihood of a correct interpretation of 
mutation frequency given that number of biopsies (Fig. 5b).

Estimation of genetic heterogeneity from two biopsies. To address the prac-
tical issue of estimating genetic heterogeneity from a minimum number of 
informative biopsies, we implemented a simple metric of the proportion of 
mutated genes in a set of two biopsies that was ubiquitous (i.e., present in 
two of two biopsies). The mean value of all pairs of biopsies from a total of 
n biopsies per tumor showed a strong divergence in HGG and MB tumors, 
with high- versus low-variability tumors well separated (Fig. 5c). These were 
the same tumors that scored as high versus low variability on the basis of the 
accuracy metric described above.

We also observed clear separation of these two classes with the R pack-
age mclust (Supplementary Fig. 18a), which models univariate mixtures of 
Gaussian distributions (i.e., corresponding to a mixture of high- and low-
genetic-variance brain tumors) via expectation maximization and the Bayesian 
information criterion50. Using two thresholds from the mclust density peaks 
(low, 0.55; high, 0.75), we calculated the accuracy of the classification of high-
variance versus low-variance tumors on the basis of a single pair of biopsies, 
and observed that high-variance tumors in particular had high true positive 
and low false positive classification rates (Supplementary Fig. 18b). On the 
basis of this metric, the vast majority of pairs of biopsies from tumors with 
high genetic heterogeneity have a low percentage of gene mutations found in 
both biopsies, such that they are always classified as heterogeneous tumors, 
and almost never as homogeneous tumors.

©
 2

01
7 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
, p

ar
t o

f S
pr

in
ge

r 
N

at
ur

e.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.



NATURE GENETICSdoi:10.1038/ng.3838

Expression analysis of immunotherapeutic targets in MB tumors. 
Microarray expression data from the Affymetrix Gene 1.1 ST array (Affymetrix,  
Santa Clara, CA) for the MB samples were analyzed in the R environment 
(v3.1.1). We used the affy package (v1.44.0) and the custom CDF hugene11sth-
sensgcdf (v19.0.0) to summarize the expression of 21,641 Ensembl (ENSG) 
genes and process the data. Expression data were normalized via the  
rma method.

Spatial genetic variance versus post-treatment clonal evolution. To directly 
measure the relative contributions of spatial heterogeneity and clonal evolution 
induced by treatment, we used our previously published cohort of matched 
pre- and post-therapeutic MB samples31. This comparison showed that in MB, 
the amount of divergence observed between primary and relapse compart-
ments far exceeded the spatial genetic variance in the primary tumor.

To assess whether the observed divergence between primary and recurrent 
MB is greater than the observed divergence between intratumoral biopsies, we 
reanalyzed the 14 primary–relapse tumor whole-genome sequencing (WGS) 
samples with matched germline, using the same pipeline as presented above. 
Briefly, mutations were called using SAMtools mpileup, filtered stringently 
against the germline, and shortlisted to those mutations with at least ten-
reads coverage in both primary and recurrent samples, and are in areas of 
normal copy number and LOH. Because the samples in this work were exomes, 
we restricted the analysis of the primary–relapse samples to the same exonic 
regions. After removing the major analysis pipeline differences, we addressed 
differences in depth of coverage. The exome libraries were sequenced to an 
average of 60×, and the WGS samples were sequenced to 30× coverage. Thus, 
our ability to assess the similarity between regions in the exome libraries was 
more sensitive to subclonal events present at low levels (and therefore pref-
erentially detectable by exome sequencing, and not by WGS). We addressed 
this bias by restricting the analysis to clonal events in the exomes, as clonal 
mutations are detectable in both exomes and genomes. To verify that this was 
a reasonable assumption, we compared the VAF of mutations found in the 
exomes to those found in matched WGS data generated from the same sam-
ples, but sequenced at 30× coverage. Matched WGS samples were available for 
biopsy 1 in each MB tumor with multiregional profiling. In all cases, we found 
that >75% of mutations with a VAF < 0.18 in the MB exomes were not found 
in the matched genomes sequenced from the same samples, which indicates 
that subclonal events are typically not well profiled at the shallower depths 
of a genomic library. Therefore, we restricted our analysis to clonal events in 
both exomes and genomes.

Focusing on the clonal and homozygous events detectable in both exome 
and genome data, we hypothesized that any differences between primary  
and relapse samples that were greater than the differences expected from dif-
ferent biopsies in a primary tumor would be largely attributable to clonal 
evolution as a consequence of therapy. To see whether the data supported 
this conclusion, we used the mutations in each biopsy to measure the pair-
wise concordance between all biopsies of individual tumors. Concordance 
was measured as the number of mutations in common between two biop-
sies, as a fraction of the total number of mutations present in both. In paral-
lel, we used the mutations in the primary and relapse samples to measure 
pairwise concordance values between disease compartments. As a positive 
control, we compared the interbiopsy and intercompartmental concordance 
values of an adult GBM sample with multiple biopsies profiled before and  
after therapy (patient 17 from ref. 32).

In MB samples we found a mean pairwise concordance of 0.3903 between 
biopsies of the same tumor—nearly an order of magnitude higher than the 
mean concordance (0.03852) observed between disease compartments 
(Wilcoxon rank-sum test P value < 2.2 × 10−16). One sample stood out as an 
outlier (MB-REC-04), and we note that in that case the tumor was a group 4 
local recurrence. This unusual pattern of recurrence for a group 4 tumor may 
indicate that the primary mass was sub-totally resected rather than grossly 
resected, thus explaining the higher similarity of the recurrent compartment 
to the primary.

In the case of the adult GBM patient (patient 17) with multiregionally sam-
pled primary (three regions; low-grade glioma) and recurrent disease (four 
regions; high-grade glioma), we found the same trend: the primary–relapse 
mean concordance of 0.01506 was an order of magnitude smaller than the 
mean intrabiopsy concordance of 0.5036 (Wilcoxon rank-sum test P value = 
0.0001406). There was no significant difference between the primary–relapse 
MB concordance and the primary–relapse GBM concordance observed in 
patient 17 (Wilcoxon rank-sum test P value = 0.5458). Similarly, there was 
no significant difference between the regional biopsies in GBM versus MB 
(Wilcoxon rank-sum test P value = 0.09926).

Finally, the primary–relapse divergence calculated from reprocessed data 
from patient 17 was on par with that initially presented in the glioma paper41; 
thus we included, for visual comparison, all the primary–relapse values for 
the glioma cohort in Figure 6a (middle panel; values directly derived from 
Supplementary Table 4 of ref. 32).

Statistical analysis. All statistical analyses were performed in the R statistical 
environment. Comparisons of categorical variables between entity types were 
done by two-sided Fisher’s exact test. Comparisons of distributions were done 
by Welch two-sample t-test (parametric) or Wilcoxon rank-sum test (nonpara-
metric). P values < 0.05 were considered statistically significant.

Data availability. The Gene Expression Omnibus accession codes for the pre-
viously unpublished gene expression data are GSE62802 (HGG samples) and 
GSE62803 (MB samples). The Toronto whole-exome sequencing data sets have 
been deposited in the European Genome-phenome Archive under accession 
codes EGAD00001000723 and EGAS00001001014.
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Intertumoral Heterogeneity
within Medulloblastoma Subgroups
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SUMMARY

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogene-
ity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation
and gene expression data across 763 primary samples identifies very homogeneous clusters of patients,
supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alter-
ations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma.
Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as
readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic
Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma sub-
types identified through integrative clustering have important implications for stratification of future clinical
trials.

INTRODUCTION

Genomics has substantially advanced our understanding of
medulloblastoma (Northcott et al., 2012a; Ramaswamy et al.,

2011). While historically considered one entity, it is now clearly
accepted that medulloblastoma comprises at least four distinct
entities: WNT, SHH, group 3, and group 4; as reflected in the
current revision of the WHO classification (Louis et al., 2016;

1The Arthur and Sonia Labatt Brain Tumour Research Centre
2Developmental & Stem Cell Biology Program
The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
3Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital D€usseldorf,
D€usseldorf 40225, Germany
4Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
5Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
6Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
7UPCI Brain Tumor Program, University of Pittsburgh, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
8Informatics Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
9Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
10Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul 30322, South Korea
11Department of Pathology

(Affiliations continued on next page)

Significance

While medulloblastoma is widely recognized as comprising four distinct subgroups, the degree of heterogeneity within the
four subgroups, and the extent of overlap between the four subgroups is unknown. Applying similarity network fusion to
integrate gene expression and DNA methylation profiling, we demonstrate that the degree of overlap between groups 3
and 4 is minimal after accounting for both expression and DNA methylation data. We identify medulloblastoma subtypes
within each of the subgroups that have distinct somatic copy-number aberrations, differentially activated pathways, and
disparate clinical outcomes. Integrated analysis has refined the boundaries between the four medulloblastoma subgroups,
and identified clinically and biologically relevant subtypes, which will inform and improve preclinical modeling, as well as
refine our current clinical classification.
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Ramaswamy et al., 2016a). These four subgroups have distinct
transcriptional profiles, copy-number aberrations, somatic mu-
tations, and clinical outcomes (Morrissy et al., 2016; Northcott
et al., 2012a; Ramaswamy et al., 2016b; Ramaswamy et al.,
2013). Indeed, current clinical trials and risk stratification bio-
markers incorporate the four molecular subgroups (Ramaswamy
et al., 2016a), as do preclinical modeling and the development of
novel therapeutics (Pei et al., 2016). However, the extent to
which there are additional layers of heterogeneity within the me-

dulloblastoma subgroups is unknown, and a concerted global
effort to analyze a very large cohort of tumors will be needed
to resolve the question.
WNT and SHH medulloblastomas are clearly identifiable and

separable across the majority of transcriptional and methylation
profiling studies, demonstrating minimal overlap with other sub-
groups (Taylor et al., 2012). Clear heterogeneity exists within the
SHH subgroup, which includes infants, children, and adults,
although the extent and nature of the substructure is not clearly
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defined (Northcott et al., 2011; Kool et al., 2014; Lafay-Cousin
et al., 2016). The transcriptomes of group 3 and group 4 medul-
loblastoma are more similar to each other, and several cytoge-
netic features, such as isochromosome 17q (i17q), are found
in both groups (Taylor et al., 2012). In response to this, the
recent revision of WHO Classification of CNS Tumors has as-
signed groups 3 and 4 as provisional entities, and a recent
consensus on high-risk medulloblastoma left this question unre-
solved (Louis et al., 2016). Establishing the nature of the bound-

ary between group 3 and group 4 is of clinical importance as
outcomes differ, particularly in the setting of upfront metastatic
dissemination (Ramaswamy et al., 2016a, 2016b; Thompson
et al., 2016).
Genome-wide transcriptional arrays and/or genome-wide

methylation arrays are the current gold standard for medullo-
blastoma subgrouping (Ramaswamy et al., 2016a). These ap-
proaches have been used independently with the underlying
assumption that they identify similar, perhaps even identical
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Figure 1. Clear Separation of the Four Medulloblastoma Subgroups through Integrative SNF Clustering
(A) Tumor clusters obtained by spectral clustering (for k = 2 to 8 groups) on the SNF network fused data obtained from both gene expression and DNAmethylation

data on 763 primary medulloblastomas. Relationships between tumors are indicated by the gray bars between columns. k = 4 (red box), defines the four

recognized subgroups.

(B) Network representation of the relationships between tumors (k = 4). The shorter the edge between samples (nodes) is the more similar the samples are (only

edges with a similarity value above the median value of all patient to patient similarity values are displayed).

(C) Heatmap representation of the sample-to-sample fused network data sorted by cluster for k = 4. Sample similarity is represented by red (less similar) to yellow

(more similar) coloring inside the heatmap.

(D) Venn diagram showing the number of samples intermediate between groups 3 and 4when using k-means or NMF clustering method on just expression or just

methylation datasets of group 3 and 4 tumors (n = 470) between k = 2 and 3.

(legend continued on next page)
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patient clusters. However, the subgroups identified using the
two data types in isolation have not been compared head to
head. More recently, methods of integrative clustering that
analyze multiple data types in aggregate have been developed,
including similarity network fusion (SNF) (Wang et al., 2014). Inte-
grative approaches using multiple data types have been sug-
gested to provide superior results compared with the analysis
of single data types in isolation. SNF creates a unified view
of patients based on multiple heterogeneous data sources, as
it can integrate both gene- and non-gene-based data. SNF
avoids the bias of genes or features pre-selection, is robust to
different types of noise, is highly scalable, and has been shown
to outperform other approaches for data integration (Wang
et al., 2014).
Prior reports have recognized the existence of additional

substructure within the four consensus subgroups, particularly
within groups 3 and 4 (Cho et al., 2011). Consequently, a medul-
loblastoma consensus conference established that subdivisions
within the known subgroups would be defined as subtypes, and
labeled a, b, g, d, ε, etc. (Taylor et al., 2012). In this study our goal
was to resolve intra-subgroup heterogeneity and identify biolog-
ically distinct and clinically relevant medulloblastoma subtypes
by studying a very large cohort of primary tumor samples.

RESULTS

Integrated Clustering of Primary Medulloblastomas
Recovers the Four Subgroups and Further Separates
Group 3 from Group 4 Tumors
Through the Medulloblastoma Advanced Genomics Interna-
tional Consortium, we assembled a cohort of 763 primary frozen
medulloblastoma samples with high-quality DNA and RNA, and
generated genome-widemethylation and expression profiles. Of
these, 491 had DNA copy-number profiles generated by Affyme-
trix SNP6 microarrays (Northcott et al., 2012b). Clinical data
including age, tumor histology, metastatic status, and survival
were available on 95.7%, 76.9%, 75.2%, and 82% of cases,
respectively (Table S1). Arm-level somatic copy-number aberra-
tions (SCNA) were inferred from methylation arrays in 100%
of cases.
To these samples, we applied SNF to integrate both gene

expression andDNAmethylation data, followed by spectral clus-
tering ranging from 2 to 12 groups. At k = 4, four distinct sub-
groups are clearly identified. Those groups correspond clinically
and structurally to the previously described consensus sub-
groups:WNT (n = 70), SHH (n = 223), group 3 (n = 144), and group
4 (n = 326) (Figures 1A–1C and S1A–S1F) (Taylor et al., 2012).
Groups 3 and 4 aremore similar to each other than to SHH and

WNT (Figures 1B and 1C). We tested the stability of these core
subgroups, by counting samples that switch subgroup affiliation
when the number of clusters increases (Figure 1A). Following
each sample from k = 4 to k = 12, no sample changed affiliation
between WNT and SHH, while a small minority of samples
moved between groups 3 and 4.

To determine the degree of overlap between groups 3 and 4,
we undertook unsupervised clustering of 470 group 3 and 4 tu-
mors using DNA methylation array data only, and then subse-
quently using transcriptional profiling data only. Both k-means
and non-negative matrix factorization (NMF) consensus clus-
tering revealed a small subset of tumors (2.9%–8.9%) that
switched subgroup between k = 2 and k = 3 as determined
through analysis of either transcriptional or methylation data
(Figures S1G and S1H). Strikingly, the set of ‘‘ambiguous group
3–4 tumors’’ identified by gene expression profiling had very little
overlap with those identified by DNA methylation profiling (Fig-
ure 1D) suggesting that the identification of the ambiguity may
be a limitation of the particular type of measurement or data,
rather than the identification of a truly distinct biological subtype.
Examination of tumors within the ‘‘overlap’’ group does not
reveal any demographic, clinical, or genetic commonalities, sug-
gesting that it could be an artifact rather than a biologically
discrete, clinically important group. Subsequent application
of SNF and spectral clustering to this cohort of group 3 and 4
samples demonstrates that only 13/470 (2.8%) of samples
change subgroup between k = 2 to k = 3, and of these 13 only
3 (0.64%) do not track back to their original subgroup when
k > 3 (Figures 1E and S1I). We conclude that group 3 and group
4 medulloblastomas are stable, mostly non-overlapping molec-
ular subgroups, and that SNF followed by spectral clustering is
a more robust method of delineating subgroups than using a
single data type in isolation.

Integrated Clustering Identifies 12 Medulloblastoma
Subtypes
We applied SNF and spectral clustering within each of the four
subgroups as defined by k = 4 across the entire cohort to deter-
mine the extent and nature of intra-subgroup heterogeneity. SNF
and spectral clustering were selected to reduce the noise intro-
duced by biased feature selection, and to leverage the full spec-
trum of our dataset. We identified clusters from k = 2 to k = 8
within each subgroup. In addition, we applied seven different
machine-learning classifiers to predict the SNF subtypes. Clus-
ter assignments from spectral clustering on the SNF fused
similarity matrix was used as the ‘‘ground truth’’ subtype assign-
ments. We split the dataset into a 70% training set and 30%
testing set, trained the various classification models in 5-fold
cross-validation on the training set and repeated the procedure
100 times (Table S2). We then applied the following criteria a pri-
ori to select the optimal number of subtypes: (1) how similar are
the SNF clusters on the sample-to-sample heatmap? (2) How
subtype specific are the broad and focal SCNA? (3) How relevant
are the clinical associations? (4) How robustly can these sub-
types be predicted using supervised machine learning? Using
these criteria, we identified 12 subtypes: two WNT, four SHH,
three group 3, and three group 4. For each solution, we identified
focal SCNA from SNP6 data and arm-level copy-number gains
and losses using copy-number states inferred from the methyl-
ation arrays.

(E) Tumor clusters obtained through spectral clustering on the SNF network fused data of group 3 and 4 samples (n = 470). A small minority of samples (n = 13,

2.8%) that were initially classified as group 3 samples at k = 2, subsequently move to group 4 at k = 3. Only 3/470 (0.64%) samples remain in group 4 after k = 5.

These samples are tracked up to k = 8 (orange).

See also Figures S1, S3 and Table S1.
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For each subgroup,we identified the top associated genes and
methylation probes that best support the final subtypes. Analysis
of the top 1%of the associated genes andmethylation probes for

each subgroup demonstrates that the subgroups are supported
by specific gene sets and methylation probes that vary sub-
stantially across subtypes (Figures 2A, 2B, and S2A–S2D;

A

B

C

Figure 2. Differential Set of Associated Genes and Methylation Probes across the 12 Subtypes
(A and B) Heatmap of the top 1%most associated genes (A) and the top 1%most associated methylation probes (B) for the subtypes inside each subgroup (left

side color bar), respectively. Top color bars indicate the subgroup and subtype sample affiliation. Samples are ordered by subtype.

(C) Percentage of genes associated for each subgroup; (1) that havemethylation probes in their promoter region, (2) for which thosemethylation probes are in the

top 1%associated probes of the respective subgroup, and (3) for which an anti-correlation can be detected between the gene expression andmethylation probes

levels inside the subgroup. The numbers of genes in each category are indicated.

See also Figure S2 and Tables S2 and S3.
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Figure 3. Clinical and Genomic Characteristics between Four SHH Medulloblastoma Subtypes
(A) Network representation map of k = 4 SNF-derived subtypes.

(B) Age at diagnosis for SHH subtypes at k = 4 (Kruskal-Wallis test). Boxplot center lines show datamedian; box limits indicate the 25th and 75th percentiles; lower

and upper whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, respectively. Outliers are represented by individual points.

(C) Overall survival of SHH subtypes (log rank test). + indicates censored cases.

(D) Frequency and significance of broad cytogenetic events across the four SHH subtypes. Darker bars show significant arm-level copy-number event (q% 0.1,

chi-square test). * indicates key statistically significant arm gain or deletion.

(E) Distribution of TP53 mutations across SHH subtypes (Pearson’s chi-square test).

(F) Overall survival stratified by TP53 mutation within SHH a and non-SHH a (log rank test). + indicates censored cases.

(G) Incidence of metastatic dissemination at diagnosis across the four SHH subtypes (chi-square test).

(legend continued on next page)
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Table S3). We evaluated the relationship between the asso-
ciated genes and methylation probes in each subgroup. We
first evaluated the number of associated genes that had
methylation probes in their promoter region. Then we iden-
tified the subset of associated genes for which those probes
were subgroup associated, and finally checked if we could
detect an anti-correlation between the associated gene expres-
sion and the associated probe methylation levels. Only 3.7%,
8.3%, 6%, and 13% of WNT, SHH, group 3, and group 4
associated genes, respectively, follow all the criteria described
above (Figure 2C). Therefore, only a small percentage of
the associated genes are directly affected by DNA methyl-
ation. This is in support of both DNA methylation and gene
expression contributing to the heterogeneity observed within
each subgroup.

Integrative Clustering of DNA Methylation and Gene
Expression Overcomes Discrepancies in Single Dataset
Analysis at Defining Subtypes
To determine whether analysis of a single data type in isolation
yielded similar results, we performed NMF clustering using
gene expression or DNA methylation data individually. Using
NMF clustering of the most variable expressed genes and
methylated probes, we found that the two different types of
data yield discordant subtypes as defined by both the cophe-
netic coefficient and silhouette value (>0.9) criteria (Figures
S3A–S3D). In addition, the group memberships between the
two modalities are divergent, indicating a lack of agreement
between expression and methylation when analyzed in isola-
tion (Figures S3E–S3H). When compared with the SNF sub-
types, we found important differences, suggesting that both
methylation and expression signatures contribute significantly
and differently to define heterogeneity within the four sub-
groups; the data types provide distinct but complementary
signals that improve over single-modality analyses. The sub-
types identified by SNF are truly a combination of information
present in both datasets, and therefore both data types are
required to gauge the true intertumoral heterogeneity of me-
dulloblastoma. For example, we observe that SHH a is mainly
supported by the methylation data, but the defined group
does not contain all SHH a samples (61%, Figure S3B). SHH
d is strongly supported by both the expression and methyl-
ation data (Figure S3B). In addition, groups 3b and 3g are
mainly defined by the signatures found in the expression
data and do not separate well using the methylation data
alone (Figure S3C). Finally, group 4g is very well supported
by the methylation data, and corresponds to a group obtained
with the expression data, but this latter group is missing
24.4% of group 4g samples (Figure S3D). Group 4b is well
supported by both data types (Figure S3D). We conclude
that methylation and expression data are complimentary,
and an integrated approach allows a unified view of the under-
lying groups that is very valuable in elucidating heterogeneity
within subgroups.

SHH Subtypes
Applying SNF and spectral clustering on SHH subgroup samples
at k = 4 identified four clinically and cytogenetically distinct
groups: SHH a (n = 65), SHH b (n = 35), SHH g (n = 47), and
SHH d (n = 76) (Figures 3A, S4A, and S4B). SHH a tumors primar-
ily affect children aged 3–16 years (Figure 3B), have the worst
prognosis (p = 0.03, log rank test, Figure 3C), and are enriched
for MYCN amplifications (SHH a 8/37, b 3/23, g 0/29, d 1/48;
p = 0.0034 Pearson’s chi-square test), and GLI2 amplifications
(SHH a 6/37, b 0/23, g 0/29, d 0/48; p = 0.0002 Pearson’s chi-
square test, Figure S4C; Table S4). Specific CNAs including 9q
loss (SHH a 42/65, b 8/35, g 11/47, d 17/76; p = 2.94 3 10!7

Pearson’s chi-square test), 10q loss (SHH a 29/65, b 6/35,
g 7/47, d 6/76; p = 1.54 3 10!5 Pearson’s chi-square test), 17p
loss (SHH a 24/65, b 5/35, g 3/47, d 8/76; p = 3.44 3 10!5

Pearson’s chi-square test, Figure 3D), and YAP1 amplifications
(SHH a 3/37, b 0/23, g 0/29, d 0/48; p = 0.04 Pearson’s chi-
square test, Figure S4C; Table S4) are also enriched in SHH a.
The recent WHO classification includes SHH-activated TP53
mutant tumors as a distinct category based on studies showing
this group as being very high risk (Louis et al., 2016; Ramaswamy
et al., 2016a; Zhukova et al., 2013). To further explore this asso-
ciation, TP53 was sequenced across 145 SHH samples. TP53
mutations are highly enriched in SHH a (SHH a 14/40, b 2/27,
g 2/31, d 6/47; p = 0.0026 Pearson’s chi-square test, Figure 3E;
Table S5). When survival is analyzed stratified by TP53mutation
and SHH a subtype, TP53mutations are only prognostic in SHH
a (HR TP53mut versus WT: SHH a 6.006 [95% CI: 1.586–22.75;
p = 0.00832] and non-SHH a 1.222 [95% CI: 0.2795–5.342;
p = 0.79, Cox proportional hazards, Figure 3F]).
Interestingly, infant SHH tumors are mainly distributed across

SHH b and SHH g (age < 3: SHH a 5/65, b 23/35, g 34/47, d 0/76;
p = 2.2 3 10!16 Pearson’s chi-square test, Figure 3B), with
disparate outcomes and copy-number profiles. SHH b tumors
are frequently metastatic (33.3% versus 9.4% in SHH b and g;
p = 0.027 Pearson’s chi-square test, Figure 3G), harbor focal
PTEN deletions (25% in SHH b versus none in g), have multiple
focal amplifications (Figure S4C; Table S4), and have a worse
overall survival compared with SHH g (HR of SHH b versus g:
2.956 95% CI: 0.908–9.63; p = 0.059 Cox proportional hazards,
Figure 3C). The difference in outcomes between SHH b and g is
possibly related to the increased rate of metastatic dissemina-
tion in SHH b, as there is a clear trend toward metastases being
a marker of poor outcome within SHH b (HR of SHH bmetastatic
versus non-metastatic: 3.621 95% CI: 0.798–16.44; p = 0.096
Cox proportional hazards). Conversely, SHH g have a relatively
quiet copy-number landscape, with no recurrent amplifications,
only one low-level recurrent focal deletion, and no significant
arm-level gains (Figures 3D and S4C). Moreover, SHH g
are enriched for the MBEN (medulloblastoma with extensive
nodularity) histology (20.9%; p = 2.34 3 10!5, Pearson’s chi-
square test, Figure 3H), which is known to portendmore indolent
clinical behavior (Rutkowski et al., 2010). Although almost all
SHH tumors with MBEN histology (n = 10) were assigned to it,

(H) WHO histological classification at diagnosis across the four SHH subtypes (chi-square test).

(I) Overall survival within SHH g stratified by MBEN histology (log rank test). + indicates censored cases.

(J) Distribution of TERT promoter mutations across SHH subtypes (Pearson’s chi-square test).

See also Figures S4, S5; Tables S2, S4, and S5.
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only a minority of SHH g tumors have MBEN histology, demon-
strating that histology alone is an inadequate surrogate to
identify SHH g tumors. The survival difference of SHH g patients
is not statistically significant between MBEN and non-MBEN
tumors, suggesting that subtype affiliation is a more powerful
biomarker than histopathology in infants with SHH medulloblas-
toma (p = 0.268, log rank test, Figure 3I). SHH d are primarily
composed of adults, have a favorable prognosis, and are
strongly enriched for TERT promoter mutations (SHH a 6/34,
b 2/22, g 7/26, d 38/42; p = 8.13 3 10!13, Pearson’s chi-square
test, Figure 3J).
To interrogate other possible solutions and to present

the full results (Figures S5A–S5E), we also compared SHH
subtypes when divided into three or five SNF groups. We refer
to the clusters obtained by SNF for other numbers of groups
(k = 3, k = 5 here) as c1, c2, c3, etc. (see Figures S4A and S4B).
When comparing k =4with k = 3, SHHa and d correspond closely
to c2 and c1, respectively, with c3 representing a group of infants
comprising SHH b and g (Figures S4A, S4B, and S5A). SHH k = 5
reveals an additional group comprised primarily of a subset of
SHH a patients with a group (c3) enriched for 9q loss with a
good prognosis and a second group (c5) with a poor prognosis
enriched for anaplasia (Figures S4B and S5C–S5E). Several ma-
chine-learning classifiers using both data types suggest poor
confidence (<80%) in predicting the c5 group. The machine-
learning classifier with the best performance, elastic net (Zou
and Hastie, 2005), is able to distinguish between four groups
with >90% accuracy (Table S2). The identification of two groups
of infant medulloblastoma with distinct clinical behavior allows
for more precise and rational planning of clinical trials for infants
with SHH medulloblastoma (Lafay-Cousin et al., 2016).

WNT Subtypes
We identify two WNT subtypes, WNT a (n = 49) and WNT b (n =
21) (Figures 4A, S6A, and S6B); WNT a is comprised mainly of
children (Figure 4B), has similar survival as WNT b (p = 0.5, log
rank test, Figure 4C), and has ubiquitous monosomy 6 (WNT a
48/49, b 6/21; p = 2.3653 10!10 Pearson’s chi-square test, Fig-
ure 4D). WNT b is enriched for older patients (p = 4.013 3 10!6,
Kruskal-Wallis test, Figure 4B) who are frequently diploid for
chromosome 6 (Figure 4D). Monosomy 6 has previously been
described as a defining WNT medulloblastoma feature; clearly,
patients with WNT b will be misdiagnosed if this criterion is
used alone. Prior reports suggesting that adult WNT medullo-
blastoma might have a different biology and worse prognosis
than childhood WNT medulloblastoma, are supported by our
current analysis (Remke et al., 2011; Zhao et al., 2016). At
k = 3, we observe a new group, comprised primarily of WNT b
without monosomy 6 (Figures S6A and S6B); however, in the
absence of any other defining feature or clear clinical relevance,
we chose k = 2 as our preferred solution.

Group 3 Subtypes
Three very distinct subtypes of group 3 emerge from our anal-
ysis, each with characteristic copy-number and clinical vari-
ables: group 3a (n = 67), group 3b (n = 37), and group 3g
(n = 40) (Figures 5A, S6C, and S6D). A total of 60% of infants un-
der the age of 3 years are in group 3a (age < 3: group 3a 14/63, 3b
4/36, 3g 5/36; p = 0.021, Kruskal-Wallis test, Figure 5B).

Clinically, groups 3a and 3b have a more favorable prognosis
compared with group 3g (Figure 5C). Group 3b are slightly older
(p = 0.021, Kruskal-Wallis test, Figure 5B), and are infrequently
metastatic (group 3a 23/53, 3b 5/25, 3g 15/30; p = 0.058
Pearson’s chi-square test, Figure 5D). Group 3a and 3g have a
similar frequency of metastatic dissemination at diagnosis (Fig-
ure 5D). Chromosome 8q (MYC locus at 8q24) loss is more
frequent in group 3a and gain more frequent in group 3g
(8q gain: group 3a 0/67, 3b 3/37, 3g 22/40; p = 2.2 3 10!16

Pearson’s chi-square test, Figure 5E), group 3b tumors have a
higher frequency of activation of theGFI1 andGFI1B oncogenes,
previously shown to be drivers of group 3 through a process
termed enhancer hijacking via focal gains and losses on chromo-
somes 1 and 9, with a paucity of arm-level chromosomal gains
and losses (GFI1 or GFI1B activation: group 3a 1/67, 3b 26/37,
3g 3/40, p < 2.2 3 10!16 Pearson’s chi-square test, Figures
S7A and S7B) (Northcott et al., 2014). OTX2 amplifications are
also enriched in group 3b, as are losses of DDX31 on chromo-
some 9; previously described to lead to activation of GFI1B
through enhancer hijacking (OTX2: group 3a 0/35, 3b 6/28, 3g
0/24; p = 0.0013; DDX31 deletion: group 3a 1/35, 3b 9/28, 3g
0/24; p = 0.0031 Pearson’s chi-square test, Figure S7A; Table
S4). Group 3g have the worst prognosis (p = 0.036 log rank
test, Figure 5C), a trend to enrichment of i17q (group 3a 17/67,
3b 5/37, 3g 10/40; p = 0.32 Pearson’s chi-square test, Figure 5E)
and frequently harbor increasedMYC copy number (group 3a 0/
35, 3b 2/28, 3g 5/24; p = 0.012, Figures 5F and S7A; Table S4),
without other focal aberrations (Taylor et al., 2012). Group 3g
have a poor prognosis independent of MYC amplification, ex-
panding the group of high-risk group 3 tumors beyond just
MYC status (p = 0.026, log rank test, Figure 5G).
We find less support for other solutions of group 3, specifically

k = 2 and k = 4 (Figures S6C, S6D, S7C, and S7D). At k = 2, we
observe a group enriched for MYC amplification (c1 0/38, c2
7/48; p = 0.014 Pearson’s chi-square test), and GFI1 family
of oncogene activations cluster together (GFI1/1B activation:
c1 1/71, c2 29/73; p = 1.14 3 10!8 Pearson’s chi-square test)
without any meaningful clinical differences (Figure S7C). At
k = 4, group 3a splits into two groups with minor contributions
from the other two groups without any new meaningful clinical
or copy-number enrichment (Figures S6D and S7D). In addition
the elastic net classifier performs strongly at k = 3 (89%–
98.8% per-group accuracy), while at k = 4 one group is less reli-
ably predicted (72% accuracy, Table S2).

Group 4 Subtypes
Group 4 is the most prevalent subgroup comprising >40% of all
medulloblastomas; previously described features include i17q,
tandem duplications of SNCAIP, and high-level amplifications
of MYCN and CDK6 (Northcott et al., 2012b). We observe clear
enrichment of key focal and arm-level SCNA at k = 3: group 4a
(n = 98), group 4b (n = 109), and group 4g (n = 119) (Figures
6A, S8A, and S8B). Clinically we observe group 4b have a slightly
higher median age at diagnosis (8.22, 10, and 7 years for groups
4a, 4b, and 4g; p = 1.34 3 10!5 Pearson’s chi-square test, Fig-
ure 6B); however, there is no statistically significant difference in
the overall survival (Figure 6C) or rate of metastatic dissemina-
tion at diagnosis (groups 4a 30/75, 4b 35/86, 4g 36/94; p =
0.94 Pearson’s chi-square test, Figure 6D). Group 4a are
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enriched forMYCN amplifications (11/66, compared with none in
group 4b and 4g; p = 2.463 10!6 Pearson’s chi-square test, Fig-
ure S8C; Table S4). Group 4a and 4g are strongly enriched for 8p
loss (group 4a 47/98, 4b 24/109, 4g 87/119; p = 1.22 3 10!13

Pearson’s chi-square test) and 7q gain (group 4a 57/98, 4b
9/109, 4g 62/119; p = 9.5 3 10!31, Pearson’s chi-square test,
Figure 6E). Group 4b are strongly enriched for SNCAIP duplica-
tions (group 4a 4/66, 4b 11/74, 4g 0/73; p = 0.0019 Pearson’s
chi-square test) and almost ubiquitous i17q (group 4a 40/98,
4b 87/109, 4g 31/119; p = 9.75 3 10!16 Pearson’s chi-square
test) with a paucity of other SCNA (Figures 6E and S8C; Table
S4). In addition, groups 4a and 4g are enriched for focal CDK6

amplifications (group 4a 4/66, 4b 0/74, 4g 6/73; p = 0.051 Pear-
son’s chi-square test, Figure S8C; Table S4). Previous studies
have suggested GFI1 and GFI1B activation to be present in
group 4, however we see GFI activation to be largely restricted
to group 3b (Figure S8D).
At k = 2, we observe groups 4a and 4g forming one group, and

group 4b being largely preserved (Figures S8A, S8B, and S8E).
At k = 4, group 4b continues to segregate from the other groups;
however, no new groups emerge with any significant clinical or
copy-number differences (Figures S8A, S8B, and S8F). Due to
the enrichment of key SCNA at k = 3, we chose this as our
preferred solution. Moreover, our classifier exhibits a decline in
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Figure 4. Clinical and Genomic Characteristics between Two WNT Medulloblastoma Subtypes
(A) Network representation map of k = 2 SNF-derived subtypes.

(B) Age at diagnosis for WNT subtypes at k = 2 (Mann-Whitney U test). Boxplot center lines show data median; box limits indicate the 25th and 75th percentiles;

lower and upper whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, respectively. Outliers are represented by individual

points.

(C) Overall survival comparing WNT a with WNT b (log rank test). + indicates censored cases.

(D) Frequency and significance of broad cytogenetic events across the twoWNT subtypes. Darker bars show significant arm-level copy-number events (q% 0.1,

chi-square test). * indicates key statistically significant arm gain or deletion.

See also Figure S6.
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Figure 5. Clinical and Genomic Characteristics between Three Group 3 Medulloblastoma Subtypes
(A) Network representation map of k = 3 SNF-derived subtypes.

(B) Age at diagnosis of group 3 subtypes at k = 3 (Kruskal-Wallis test). Boxplot center lines show data median; box limits indicate the 25th and 75th percentiles;

lower and upper whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, respectively. Outliers are represented by individual

points.

(C) Overall survival of group 3 subtypes (log rank test). + indicates censored cases.

(D) Incidence of metastatic dissemination at diagnosis for the three group 3 subtypes (chi-square test).

(E) Frequency and significance of broad cytogenetic events across the group 3 subtypes. Darker bars show significant arm-level events (q% 0.1, chi-square test).

* indicates key statistically significant arm gain or deletion.

(legend continued on next page)
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confidence at k = 4, suggesting these groups are not as robust as
k = 3 (Table S2).

Comparable Subtypes with Key Clinical Differences Are
Identified by Other Integrative Analyses
Two other integrative clusteringmethods have been employed by
the The Cancer Genome Atlas (TCGA) consortium in previous
studies of other cancer histologies. We applied both methods to

our dataset; when applying the cluster of clusters (COCA) method
used by TCGA in low-grade glioma and pan-cancer studies (Brat
et al., 2015; Hoadley et al., 2014) we observed that the method
was quite limited in the potential to leverage information from our
two data types in the current manuscript. The COCA subgroups
were driven by the samples that agree or disagree between the
two data types clustered in isolation, which is the COCA input.
COCA failed to identify one SHH infant subtype or group 3b.

(F) Distribution of MYC amplifications across group 3 subtypes (Pearson’s chi-square test).

(G) Overall survival of group 3 subtypes without MYC amplifications for each subtype compared with MYC-amplified tumors (log rank test). + indicates

censored cases.

See also Figures S6 and S7; Tables S2 and S4.
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Figure 6. Clinical and Genomic Characteristics of the Three Group 4 Medulloblastoma Subtypes
(A) Network representation map of k = 3 SNF-derived subtypes.

(B) Age at diagnosis of group 4 subtypes at k = 3 (Kruskal-Wallis test). Boxplot center lines show data median; box limits indicate the 25th and 75th percentiles;

lower and upper whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, respectively. Outliers are represented by individual

points.

(C) Overall survival of group 4 subtypes (log rank test). + indicates censored cases.

(D) Incidence of metastatic dissemination at diagnosis across the three group 4 subtypes (chi-square test).

(E) Frequency and significance of broad cytogenetic events across the three group 4 subtypes. * indicates key statistically significant arm gain or deletion. Darker

bars show significant arm-level events (q % 0.1, chi-square test).

See also Figure S8 and Tables S2, S4.
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iCluster was used successfully by TCGA to identify relevant
subtypes (Collisson et al., 2014). When applying iCluster to our
dataset, at k = 4, the four groups did not have the demographics
and SCNA consistent with the four previously described groups.
When comparing the four iCluster groups with those defined by
SNF,WNT and group 3 do not separate, and SHH comprises two
groups. When we analyze the iCluster results for five groups, we
recover two SHH groups, plusWNT, group 3, and group 4, which
in this case corresponds very well to the SNF subgroup (when
considering the two SHH groups together). We then asked if
we could recover similar subtypes to SNF using iCluster. As
we could not recover the four main groups, subgroups defined
by SNF were then individually analyzed using iCluster. We
observe a near 80% concordance with the SNF subtypes. The
childhood and the adult SHH subtypes as well as the group 4
subtypes are recapitulated (along with a single SHH infant
group). However, we identified key differences particularly within
the WNT, SHH, and group 3 subgroups. Only one WNT group is
identified, the two infant SHH subtypes are not identified, and the
two distinct group 3 subtypes withMYC amplifications and GFI1
activation are not observed. Clearly, the SNF method is superior
at leveraging information of multiple datasets to identify mean-
ingful groups of patients in a cancer cohort, specifically in a me-
dulloblastoma cohort.

Differential Pathway Activation Defines Subtypes
across All Four Medulloblastoma Subgroups
Pathway enrichment analysis was performed for each of the
identified subtypes across all four subgroups using the top
10% of associated genes across each subtype. We observe
several significantly enriched pathways for all identified subtypes
(adj. p value < 0.05), supporting subtype-specific biological pro-
cesses and transcriptional networks (Figures 7A–7D). In partic-
ular, in SHH we observe several pathways enriched in SHH b
and g, with developmental pathways more enriched in SHH g
over b (Figure 7A). Genes involved in DNA repair and cell cycle
are significantly enriched in SHH a. Several actionable path-
ways, as defined by the availability of approved drugs, are sub-
type specific. Specifically, sumoylation is enriched in SHH a, ion
channels are enriched in SHH b and g, and telomere mainte-
nance is enriched in SHH a and d. Receptor tyrosine kinase
signaling is enriched in SHH g and, to a lesser extent, in b.
DNA repair pathways are enriched in SHH a, suggesting that
strategies to inhibit the DNA damage response and increase
replicative stress are more likely to be effective in this group.
Group 3a tumors are enriched for photoreceptor, muscle

contraction, and primary cilium-related genes (Figure 7B). Path-
ways involved in protein translation are enriched in groups 3b
and 3g, which are potentially actionable using modulators
of protein synthesis such as proteasome inhibitors. Telomere
maintenance is also more enriched in group 3g, suggesting
that telomerase inhibition may only be effective in one group.
Several pathways are identified across group 4 subtypes, which,
coupled with subtype-specific copy-number enrichment, further
supports the existence of three group 4 subtypes (Figure 7C).
Actionable pathways restricted to particular subtypes include
MAPK and FGFR1 signaling in group 4b and PI3K-AKT signaling
and ERBB4-mediated nuclear signaling in group 4g. Cell migra-
tion pathways are more enriched in group 4a.

DISCUSSION

Our study identifies and delineates the intertumoral heterogene-
ity present within medulloblastoma subgroups. Leveraging a
large cohort of medulloblastomas profiled by combined gene
expression and DNA methylation, we have identified different
subtypes within each of the four core subgroups. These sub-
types have particular clinical and copy-number features, which
allow for a refinement in our understanding of the genomic land-
scape of medulloblastoma (Figure 8). Combining expression and
methylation data using SNF adds further proof that groups 3 and
4 are largely different biological entities. The deeper we go in
clustering medulloblastoma samples, the less consistent the
groups become. This is exemplified by poor predictability of pu-
tative subtypes when a large number of subtypes is assumed.
Defining clinical features and CNAs also tend to lose their
distinctive profiles as we increase the number of clusters, sug-
gesting that heterogeneity is bounded by a discrete number of
optimal groups.
Comparison of SNF with consensus clustering of either gene

expression or DNA methylation data analyzed in isolation clearly
suggests that an integrated approach provides a much more
refined and accurate classification. This is particularly striking
when evaluating the boundary between groups 3 and 4, where
samples that are deemed indeterminate using gene expression
and DNA methylation in isolation are largely non-overlapping.
Moreover, in elucidating the heterogeneity within subgroups,
we observe significant disagreement between gene expression
and DNA methylation in isolation, suggesting that each data
type makes a unique and non-redundant contribution to defining
the subtypes. The very low number of samples that change sub-
group affiliation using SNF strongly advocates that definition of
these two groups is largely enhanced using an integrative
approach. A limitation of our approach is the bulk analysis of
samples. At a subclonal level, a greater degree of overlap across
groups 3 and 4 cannot be discounted.More detailed analysis at a
cellular level, specifically applying single-cell methods, will help
delineate the full subclonal structure, potentially uncovering sub-
sets of group 3 and 4 samples with common mechanisms and
cellular origins. Further studies integrating emerging technolo-
gies such as long non-coding RNA, proteomics, and histone
modifications may allow an even more refined description of
the medulloblastoma landscape; however, the large cohorts
of frozen tissue required for these studies are presently not
available.
The identification of subtypes has significant biological and

clinical implications. Several previously described copy-number
alterations within medulloblastoma subgroups such as amplifi-
cations/gains of MYC, MYCN, OTX2, CDK6, SNCAIP, and
ACVR1, as well as several arm-level events including i17q clearly
segregate between subtypes (Northcott et al., 2012b). Our iden-
tification of unique cytogenetic aberrations that occur in concert,
as well as specific biological pathways enriched within specific
subtypes, will serve to inform creation of rational preclinical
models that closely mirror the human diseases. Several of
these aberrations are actionable and largely restricted to sub-
types, which will also allow for a more personalized treatment
approach. Several subtypes, particularly in SHH and group 3,
have clear and drastic clinical and prognostic differences, which
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will allow for more robust risk stratification in future clinical trials.
Furthermore, a major hurdle to clinical trial design has been the
overlap of groups 3 and 4 in current studies, which if applied
today would make strata assignment difficult. The next genera-
tion of clinical trials for high-risk medulloblastoma will involve
subgroup-specific therapies. The inability to stratify 10% of
patients to either groups 3 or 4 has the potential to either deprive
a patient of an innovative therapy or, of more concern, expose
a child to an inappropriate escalation or de-escalation of
therapy.
Clinically, our observed groups have immediate implications.

It has been shown that TP53 mutations are highly prognostic in
SHH. We extend these findings whereby TP53 mutations are
not only enriched in SHH a but also only prognostic in SHH a.
This is highly relevant for clinical trial design, where TP53mutant
SHH has been identified as a very-high-risk group to be priori-
tized for novel therapies in both Europe and North America
(Ramaswamy et al., 2016a); clearly, the observation that TP53
mutations are highly enriched and prognostic in SHH a has sig-
nificant implications. A limitation of this is the absence of germ-
line status, which, based on previous studies, are likely TP53
mutant enriched in SHH a.
The identification of two infant SHH groups has clear and im-

mediate clinical significance. Currently, infant medulloblastomas
are stratified by the presence or absence of desmoplastic
morphology. However, several reports have suggested that in-

fant SHH as a whole have a favorable prognosis independent
of morphology. Our results suggest that clinical risk stratification
can be refined by incorporation of integrated subtypes, whereby
SHH g are clearly a very low-risk group and could be spared the
toxic effects of high-dose chemotherapy. Our observation that
MBEN histology is almost exclusive to SHH g, but represent a
minority of cases within SHH g, has significant implications for
clinical trials. Current infant clinical trials stratify patients based
on either classic or desmoplastic/MBEN histology. Indeed,
the frequency of desmoplastic histology is similar across all
four SHH subtypes, despite significant differences in survival
between SHH subtypes. The most recent infant medulloblas-
toma study from the Children’s Oncology Group ACNS1221
(NCT02017964) was closed prematurely due to an excess of
relapses. This study selected infants with a ‘‘desmoplastic’’
morphology for treatment de-escalation, of which the vast ma-
jority are SHH. Indeed, our identification of two infant subtypes
of SHH represents an example where more robust risk stratifica-
tion has the potential to accurately select patients for de-escala-
tion of therapy in future clinical trials. Overall, this further
supports the idea that the incorporation of molecular stratifica-
tion rather than subjective morphology alone has the potential
for immediate clinical benefit.
Similarly, for group 3, we identify a high-risk group that is en-

riched for MYC amplification, but for which not all patients are
MYC amplified. Interestingly, the majority of in vitro cell lines of

Figure 8. Graphical Summary of the 12 Medulloblastoma Subtypes
Schematic representation of key clinical data, copy-number events, and relationship between the subtypes inside each of the four medulloblastoma subgroups.

The percentages of patients presenting with metastases and the 5-year survival percentages are presented. The age groups are: infant 0–3 years, child >3–10

years, adolescent >10–17 years, and adult >17 years.
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medulloblastoma do not represent the clear intertumoral hetero-
geneity, but rather areMYC-amplified orMYC-activated models
that actually represent only group 3g. The identification of signif-
icant heterogeneity across group 3 underlies the urgent need to
developpreclinicalmodels that faithfully recapitulate thedifferent
subtypeswithin each subgroup. In group 4, there are currently no
robust preclinical models, and the subgroups we describe, spe-
cifically the mutually exclusivity of MYCN amplifications and
SNCAIP duplications, may help with future modeling.

Taken together, our results highlight the power of combining
multiple data types compared with the use of single data types
in isolation. This approach has identified that there may be a limit
to the degree of substructure across medulloblastoma samples;
however, only a study with a much larger cohort could fully
assess the extent of intertumoral heterogeneity within the sub-
groups. We identify clinically important substructure within sub-
groups, which will allow further refinement of our biological and
clinical risk stratification schemes. The identification of homoge-
neous subtypesmay simplify the identification of targets for ther-
apy, and could allow for therapies effective across subtypes. The
development of reliable biomarkers to identify subtypes will pro-
vide much needed prognostic information for patient stratifica-
tion, particularly in regard to SHH and group 3medulloblastoma.
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763 primary medulloblastoma samples This paper N/A

Deposited Data

Expression and methylation array raw and
analyzed data

This paper GEO: GSE85218

Expression array data (285 samples)

(included as well in GSE85218)

Northcott et al., 2012b GEO: GSE37382

SNP6 data Northcott et al., 2012b GEO: GSE37384

Oligonucleotides

Primer for P53 see Table S5 Zhukova et al., 2013 N/A

TERT forward primer, 50-CAG CGC TGC

CTG AAA CTC-30
Remke et al., 2013 N/A

TERT reverse primer, 50-GTC CTG CCC CTT

CAC CTT C-30
Remke et al., 2013 N/A

Software and Algorithms

Affy R Biocondcutor package Gautier et al., 2004 http://bioconductor.org/packages/release/

bioc/html/affy.html

custom chip definition file (CDF)
hugene11sthsensgcdf (v19.0.0).

Dai et al., 2005 http://brainarray.mbni.med.umich.edu/Brainarray/
Database/CustomCDF/19.0.0/ensg.asp

arrayQualityMetrics R Bioconductor

package (v3.22.0)

Kauffmann et al., 2009 https://www.bioconductor.org/packages/

release/bioc/html/arrayQualityMetrics.html

minfi R Bioconductor package (v1.6.0)

including SWAN normalization method

Aryee et al., 2014;

Maksimovic et al., 2012

http://bioconductor.org/packages/release/

bioc/html/minfi.html

NMF R package (v0.20.6) Gaujoux and Seoighe, 2010 https://cran.r-project.org/web/packages/

NMF/index.html

conumee R Bioconductor package (v0.99.4) Hovestadt et al., 2013;
Sturm et al., 2012

http://bioconductor.org/packages/release/
bioc/html/conumee.html

GISTIC2 method (v6.2) Mermel et al., 2011 http://portals.broadinstitute.org/cgi-bin/

cancer/publications/pub_paper.cgi?
mode=view&paper_id=216&p=t

ConsensusClusterPlus R Bioconductor

package (v1.24.0)

Wilkerson and Hayes, 2010 https://www.bioconductor.org/packages/

release/bioc/html/ConsensusClusterPlus.html

SNFtool R package (v2.2.0) Wang et al., 2014 https://cran.r-project.org/web/packages/

SNFtool/index.html

MethylMix R Bioconductor package (2.0.0) Gevaert, 2015 https://www.bioconductor.org/packages/
release/bioc/html/MethylMix.html

Infinium DNA Methylation BeadChip (450K)

probe annotation on hg38

Zhou et al., 2016 http://zwdzwd.github.io/InfiniumAnnotation

StratomeX tool as part of the Caleydo

suite (v3.1.5)

Streit et al., 2014;

Lex et al., 2012

http://caleydo.org/tools/stratomex/

g:profiler Reimand et al., 2016 http://biit.cs.ut.ee/gprofiler/

Cytoscape (v3.2.0) Shannon et al., 2003 http://www.cytoscape.org/

Cytoscape Enrichment map Merico et al., 2010 http://apps.cytoscape.org/apps/enrichmentmap

IClusterPlus R Bioconductor package (v1.10.0) Mo et al., 2013 https://www.bioconductor.org/packages/

release/bioc/html/iClusterPlus.html
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Michael D
Taylor (mdtaylor@sickkids.ca).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Acquisition of Patient Samples
All medulloblastoma samples were collected at diagnosis after obtaining informed consent from subjects as part of the Medulloblas-
toma AdvancedGenomics International Consortium. Approval was obtained from institutional research ethics boards at the following
institutions: The Hospital for Sick Children, Children’s Hospital of Pittsburgh, Seoul National University Children’s Hospital, The
Children’s Memorial Health Institute, Institute of Pediatric Hematology and Oncology, Mayo Clinic, The Chinese University of
Hong Kong, John Hopkins University School of Medicine, University of Alabama at Birmingham, Seattle Children’s Hospital, Univer-
sity of California San Francisco, Burdenko Neurosurgical Institute, McMaster University, Erasmus University Medical Center, Asan
Medical Center, Kitasato University School of Medicine, Hospital Pediatrı́a CentroMédico Nacional Century XXI, Masaryk University,
Fondazione IRCCS Istituto Nazionale Tumori, Emory University, Osaka National Hospital, University of Debrecen, University of Na-
ples, Washington University School of Medicine, Montreal Children’s Hospital, Hospital Sant Joan de Déu, Virginia Commonwealth
University, Chonnam National University Hwasun Hospital and Medical School, Children’s Health Queensland Hospital and Health
Service, University of Calgary, University of Sao Paulo, Cincinnati Children’s Hospital Medical Center, Hospital de Santa Maria, Lis-
bon, University of Arkansas forMedical Sciences, Catholic University Medical School, David Geffen School ofMedicine at UCLA, The
University of Sydney, Kumamoto University Graduate School of Medical Science, Saint Louis University School ofMedicine, Hospital
Infantil de Mexico Federico Gomez, Rainbow Babies & Children’s Hospital. Patients were selected only if their treatment plan
required surgical resection. Samples were obtained as fresh frozen tissue from the time of diagnosis and stored at -80"C until pro-
cessed for the purification of nucleic acids. Tumor isolates were partitioned for both DNA and RNA extraction. Using all information in
our hands, we selected only primary tumor medulloblastoma samples for this study and removed duplicates. The sex and gender of
the 763 medulloblatoma patients used in this study are presented in Table S1.

METHOD DETAILS

Nucleic Acid Extraction
DNA extraction was performed by incubation with proteinase K overnight at 55"C followed by three sequential phenol extractions and
ethanol precipitation. Total RNAwas isolated using the TriZol methodwhere tissue was homogenized in a Precellys 24 tissue homog-
enizer (Bertin Technologies, France) in Trizol using strict RNAase free conditions. DNA was quantified using the Picogreen method
and RNA quantified using a NanoDrop 1000 instrument (Thermo Scientific) and integrity assessed by agarose gel electrophoresis
(DNA) or Agilent 2100 Bioanalyzer (RNA) at the Centre for Applied Genomics (TCAG) at the Hospital for Sick Children in Toronto, Can-
ada. RNA with an RNA integrity number of 7 or higher was required for analysis by Affymetrix Gene Arrays.

Expression and Methylation Data
To generate gene expression array profiling, 400ng of total RNAwas processed and hybridized to the Affymetrix Gene 1.1 ST array at
the Centre for Applied Genomics (TCAG) at the Hospital for Sick Children (Toronto, Canada) according tomanufacturers instructions.
In addition, all samples were analyzed on the Illumina InfiniumHumanMethylation450 BeadChips at TCAG (Toronto, ON) according to
manufacturer’s instructions.

TERT Promoter and TP53 Sequencing
TERT promoter mutational status was determined using direct sanger sequencing and genotyping as previously described where
sufficient DNA was available (Remke et al., 2013). Two primers (forward primer, 50-CAG CGC TGC CTG AAA CTC-30; reverse primer,
50-GTC CTG CCC CTT CAC CTT C-30) were designed to amplify a 163-bp product encompassing C228T and C250T hotspot muta-
tions in the TERT promoter—corresponding to the positions 124 and 146 bp, respectively, upstream of the ATG start site. Two fluo-
rogenic LNA probes were designed with different fluorescent dyes to allow single-tube genotyping. One probe was targeted to
the WT sequence (TERT WT, 50-5HEX-CCC CTC CCG G-3IABkFQ-30), and one was targeted to either of the two mutations (TERT
mut, 50-56FAM-CCC CTT CCG G-3IABkFQ). Primer and probes were custom designed by Integrated DNA Technologies (Coralville,
Iowa, USA) using internal SNP design software, and sequence homogeneity was confirmed by comparison to all available sequences
on the GenBank database using BLAST (). Primers were optimized to avoid for hairpins and homo- and heterodimers. Primers and
probes were obtained from Integrated DNA Technologies.

Real-time PCR was performed in 25 ml reaction mixtures containing 12.5 ml of TaqMan Universal Master Mix II with UNG (Applied
Biosystems), 900 nM concentrations of each primer, 250 nM TERT WT probe, 250 nM TERT MUT probe, and 1 ml (25 ng) of sample
DNA. Thermocycling was performed on the StepOnePlus (Applied Biosystems) and consisted of 2 min at 50 "C, 10 min at 95 "C, and
40 cycles of 95 "C for 15 s and 60 "C for 1 min.
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Analysis was performed using StepOne Software, version 2.1. Samples were considered mutant if they had CT values of%39 cy-
cles. Each sample was verified visually by examining the PCR curves generated to eliminate false positives due to aberrant light emis-
sion. End-point allelic discrimination genotyping was performed by visually inspecting a plot of the fluorescence from the WT probe
versus the MUT probe generated from the post-PCR fluorescence read.
TP53 mutational status was determined using direct sanger sequencing as previously described where sufficient DNA was avail-

able (Zhukova et al., 2013).We used amplitaq gold and after purification with ampure beads, forward and reverse sequencing primers
using dGTP BigDye Terminator v3.0 Cycle Sequencing Ready Reaction Kit (Life Technologies), and 5 % DMSO on the ABI3730XL
capillary genetic analyzer (Life Technologies). The sequencing primers are the same as the PCRprimers. The TP53 primers alongwith
the melting temperature are presented in Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microarray Gene Expression Analysis
To generate gene expression array profiling, 400ng of total RNAwas processed and hybridized to the Affymetrix Gene 1.1 ST array at
TCAG according to manufacturer’s instructions. Two hundred and eighty-five arrays were previously generated (GEO accession
GSE37382) and included in the analysis. Expression data were analyzed in the R environment (v3.1.1). We used the affy package
(v1.44.0) (Gautier et al., 2004) and the custom chip definition file (CDF) hugene11sthsensgcdf (v19.0.0).
(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/19.0.0/ensg.asp) (Dai et al., 2005) to load and summa-

rize the expression of 21,641 Ensembl (ENSG) genes and process the data. Samples flagged by the arrayQualityMetrics Bio-
conductor package (v3.22.0) (Kauffmann et al., 2009) were removed due to low quality. Expression data were normalized using
the rma method.
Unsupervised clustering using NMF using top 10,000 most variably expressed genes (determined by the standard deviation) was

carried out using the NMF package (v0.20.6) (Gaujoux and Seoighe, 2010). We reselected the top most 10,000 variably expressed
genes for each subset of samples on which we ran NMF.

Genome Wide Methylation Analysis
All samples were analyzed on the Illumina Infinium HumanMethylation450 BeadChips at TCAG (Toronto, Ontario) according to man-
ufacturer’s instructions. Bisulfite conversion was performed using the EZ DNA Methylation! Kit (Zymo, Irvine, CA). Samples were
processed as per manufacturer’s instructions. Raw data files (.idat) generated by the Illumina iScan array scanner were processed
in the R statistical environment (v3.0.0 and 3.1.1) using theminfi (v1.6.0) (Aryee et al., 2014) and IlluminaHumanMethylation450kmani-
fest (v0.4.0) R Bioconductor packages. We checked all samples for unexpected genotype matches by pairwise correlation of the 65
genotyping probes on the 450k arrays, allowing us to remove remaining duplicates. We ran the detectionP function from the minfi
package to identify probes and samples with low quality. Samples were removed if more than 1%of their probes had a p value above
0.01 and probes were removed if their p value was above 0.01 in at least 5% of samples. We removed probes on sex chromosomes
as well as those located on or close to known single nucleotide polymorphisms (SNP). We retained a total of 321,174 probes for the
analysis. The datawas normalized using the SWANmethod as part of theminfi package (Maksimovic et al., 2012).We generated both
the beta and logitB values matrix values. Unsupervised clustering using the top 10,000 most variably methylated probes defined by
the standard deviation was carried out using the NMF package (v0.20.6). We reselected the top most 10,000 variably methylated
probes for each subset of samples on which we ran NMF.

Methylation Array Copy Number Analysis
Copy number inference from methylation arrays and identification of recurrent broad events. Copy number segmentation was per-
formed from genome wide methylation arrays using the conumee package (v0.99.4) in the R statistical environment (v3.2.3) as pre-
viously described (Hovestadt et al., 2013; Sturm et al., 2012). Segment files were generated for each subgroup and subtype.
Identification of recurrent broad copy number events (arm level chromosomal events) was performed from segmented copy num-

ber derived from methylation data (as described above). The log2 R ratio (LRR) of each chromosome was calculated using a size-
weighted mean of all segments mapping to the chromosome. A chromosome was declared gained if its LRR was greater than
0.2, lost if the LRRwas less than -0.2, and balanced otherwise. Unlike GISTIC, gained and lost broad events were analyzed together.
The significance of the frequency of each broad event was tested using the exact binomial test. Each broad event frequency was
compared to the background frequency, which was determined from a robust regression of the observed frequencies with respect
to gene content (i.e. number of RefSeq genes) across all chromosomes. This approach was motivated by GISTIC’s broad event
analysis.

SNP6 Copy Number Analysis
Affymetrix SNP6 CEL files were processed as previously described (Northcott et al., 2012b) (GEO accession GSE37384). Copy num-
ber stateswere estimated as described previously using the hg18 reference genome. Segmented copy number estimates fromSNP6
arrays were processed for input with the GISTIC2 method (v6.2) using the default parameters (Mermel et al., 2011) for the identifica-
tion of recurrent focal copy number events.
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Clinical Correlation and Survival Analysis
Progression-free survival and overall survival was right-censored at 5 years and analyzed by the Kaplan-Meier method and p value
were reported using the log-rank test. Associations between covariates and risk groups were tested by the Fisher’s exact test.
Continuous variables were tested using non-parametric measures, specifically the Mann-Whitney U test or Kruskal-Wallis test.
The significance of chromosome arm frequencies were evaluated using the exact binomial test, comparing the observed frequency
to the expected frequency derived from a robust regression of event frequency and gene content, in a similar manner to the ‘broad
analysis’ in GISTIC2. All statistical analyses were performed in the R statistical environment (v3.2.3), using R packages survival
(v2.37-7), and ggplot2 (v1.0.0).

Group 3 and Group 4 Analysis
K-means clustering was performed using the top 10,000 most variable methylation probes (determined by median absolute devia-
tion) of Group 3 and Group 4 samples (n=470). Consensus clustering was obtained using the ConsensusClusterPlus R Bioconductor
package (v1.24.0) (Wilkerson and Hayes, 2010) with 1,000 repetitions in the R statistical environment (v3.2.2). Similar approach was
used on the top 10,000most variable genes of this set of 470 Group 3 and Group 4 samples. In addition, the NMFmethod was run (as
described above) for both expression and methylation data on the same set of Group 3 and Group 4 samples.

We identified the outlier samples moving from Group 3 to Group 4 from the gene expression and DNA methylation NMF results
using the following rule. We identified at k=2 the Group 3 and Group 4 clusters using the known subgroups of the samples (each
group had a larger proportion of samples of a particular subgroup). At k=3, we identified which cluster(s) are largely composed of
Group 3 and Group 4 (two Group 3 and one Group 4 clusters for the expression data, and one Group 3 and two Group 4 clusters
for the DNAmethylation data, Figure S1G). Then we counted the number of samples that were initially considered to be of a particular
subgroup for k=2 andmoved to be in another subgroup at k=3 (Figure 1D). Similar approach has been used to detect the outlier sam-
ples moving from Group 3 to Group 4 in the k-means consensus clustering (Figures 1D and S1H).

Similarity Network Fusion Analysis (SNF)
The Similar Network Fusion (SNF) method was run on 763 primary tumor samples using both gene expression and DNA methylation
data (Wang et al., 2014). The SNF method does not require any prior feature selection so we used the full matrix of gene expression
(21,641 genes) and the full matrix of methylation data (logitB values, 321,174 probes). We used the SNFtool R package (v2.2.0) with
the parameters K = 50, alpha = 0.6, T = 50. Spectral clustering implemented in the SNFtool package was run on the SNF fused sim-
ilarity matrix to obtain the groups corresponding to k=2 to 20.

We obtained four cluster at k=4 corresponding to the four medulloblastoma subgroups; WNT (n= 70), SHH (n=233), Group 3
(n=144), Group 4 (n=326). For each of these four subgroupswe then ran the SNFmethod independently with the following parameters
and clustered the resulting fused similarity matrix with spectral clustering using k=2 to 8.

Parameters:
WNT: K = 10, alpha = 0.6, T = 50
SHH: K = 40, alpha = 0.6, T = 50
Group 3: K = 40, alpha = 0.6, T = 50
Group 4: K = 60, alpha = 0.6, T = 50
Group 3 and Group 4: K = 80, alpha = 0.6, T = 50
We identified the top associated genes andmethylation probes that have the largest agreement with the final fused network struc-

ture. To do sowe computed the NormalizedMutual Information (NMI) score (as part of the SNFtool package) for each feature (i.e each
gene and methylation probe). For each feature, we constructed a patient network based on the feature alone and subsequently used
spectral clustering. We then compared the result of the resultant clustering to the one obtained from the whole fused similarity matrix
by computing the NMI score as previously described (Wang et al., 2014). As mentioned in this paper, a score of 1 indicates the stron-
gest feature and shows that the network of patients based on the given feature leads to the same groups as the fused network. A
score of 0 means that there is no agreement between the groups that can be derived from the feature and the fused network groups.
We therefore ranked all features according to their NMI scores that represent their importance for the fused network. We then
selected a list of top 1% and top 10% features (also called associated genes and methylation probes) for each dataset (Figure 2
and S2A–S2D) for subsequent analysis. Those top features have expression or methylation patterns that are the most informative
when determining our final subtypes using individual features.

Groups Visualization Using Stratomex
Weused the StratomeX tool as part of the Caleydo suite (v3.1.5) to visualize the grouping of samples and the relationship between the
groups resulting from different datasets, methods and/or parameterization of clustering (Streit et al., 2014; Lex et al., 2012). Sample
group labels obtained by spectral clustering of the SNF fused similarity matrix or independent NMF clustering was imported to
StratomeX software. The groups were colored according to the subgroup or subtype (if any) and reordered to show the relationship
between the different clustering results (columns). In this study, we only used StatromeX for visualization and did not use its analytical
functionalities.
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Network Visualization with Cytoscape
From the fused similarity matrix returned by the SNFmethod, we retrieved all the patient pairs for which the values (W) was superior to
themedian values of all W pairs and imported those paired in Cytoscape (v3.2.0) (Shannon et al., 2003). We used the edged-weighted
Spring embedded layout with the W values for visualization showing the edges in Figure 1B, and hiding the edges to only show the
nodes (i.e patients) for Figures 3A, 4A, 5A, and 6A.

Relationship between Associated Genes and Probes
We evaluated the relationship between the gene expression features and the DNAmethylation probe features in each subgroup. We
applied theMethylMix R Bioconductor package (Gevaert, 2015) developed to identify potential cancer driver genes affected by hypo
or hypermethylation changes, i.e. looking for anti-correlation between the methylation level and gene expression levels across sam-
ples. We obtained the probes annotations for hg38 from Zhou et al. (Zhou et al., 2016, Online supplemental data, http://zwdzwd.
github.io/InfiniumAnnotation). We focused on probes within 1500 bp of the transcription start site (TSS) and identify 1342, 1573,
1673 and 1673 candidate driver genes for WNT, SHH, Group 3 and Group 4, respectively. Among those, 8, 18, 13 and 28 WNT,
SHH, Group 3 and Group 4 genes, respectively, where in our features genes and had anti-correlated probes present in the top
DNA methylation features, representing therefore only 3.7, 8.3, 6 and 13% of the feature genes (Figure 2C).

Pathway Enrichment Analysis
Pathway enrichment analysis was performed with g:Profiler and visualized as Enrichment Map in Cytoscape (Reimand et al., 2016;
Merico et al., 2010; Shannon et al., 2003). We considered the top 10% associated genes (as described above) that were the most
relevant for the final subtypes. For each subtype, we ranked up-regulated genes by their z-scores and analyzed the resulting
gene lists with the ordered query setting of g:Profiler using pathways and processes with more than 5 and up to 1000 genes. Multiple
testing correction was conducted with the default method of g:Profiler. Biological processes from the GeneOntology, pathways from
Reactome and KEGG, and protein complexes from CORUM were included in the enrichment analysis and other data sources were
excluded. Electronic annotations (IEA) from Gene Ontology were excluded to only cover high-confidence gene annotations. Pro-
cesses and pathways with g:profiler FDR corrected q values <0.05 were considered significant. Enriched categories were further
filtered: pathways and processes with less than three associated genes were discarded.
Enrichment maps represent biological processes and pathways enriched in subtype-specific up-regulated genes. Each node

represents a process or pathway; nodes with many shared genes are grouped and labeled by biological theme. Nodes sizes are
proportional to the number of genes in each process, in each subgroup. Process and pathways connected by edges have genes
in common, shorter edges represent stronger edges with Jaccard and Overlap coefficient combined by the Enrichment Map app
of Cytoscape at cutoff value 0.66. Nodes are colored according to the subtype in which the process is enriched; processes enriched
in more than one subtype have multiple colors.
Enrichment map visualization was manually curated to group functionally similar groups of pathways and to remove redundant

groups and singletons. Connected nodes and unconnected but actionable nodes are shown.

Classifier Description
In this study, we used seven classifiers based on diverse machine learning approaches. Ridge logistic regression (labeled as Ridge
LR) is a regression model, assigning weight to each feature to make a binary prediction. L2 regularization shrinks the weights to avoid
overfitting. Lasso logistic regression (labeled as Lasso LR) works the same way as Ridge but uses L1 regularization instead, which
sets some of the weights to zero, effectively performing feature selection again to avoid overfitting. Elastic net logistic regression
(labeled as Elastic Net) also works similarly to Ridge but uses a linear combination of L1 and L2 regularizations and is able to select
correlated features (through L2) while still performing feature selection (setting some of the weights to zero) through L1. Decision tree
(labeled as Decis.Tree) utilizes a tree-structured graph with inner nodes representing decision rules and end nodes representing the
classification decisions. Each path from root to a leaf in such a tree represents a classification rule. The individual decision rules are
selected according to the information gain criterion. Random forest (labeled as Rand.Forest) uses an ensemble of decision trees to
make classification predictions. Each decision tree uses a random subset of features trained on a bootstrapped set of samples. The
output is the mode of the classification from all decision trees in the random forest. Support Vector Machines (SVM) make classifi-
cation predictions by first transforming the data according to a chosen kernel and then constructing a maximum margin classifier
such that the different classes are separated by the decision hyperplane as much as possible. SVM with linear kernel (labeled as
SVM lin) performs a linear transformation of the data, whereas SVM with radial basis function kernel (labeled as SVM rbf) performs
a Gaussian transformation of the data.
Prior to training any of the classifiers, we used Kruskal-Wallis H test, also know as ‘‘one-way ANOVA on ranks’’ to constrain the

feature space. This way we selected top 1% of genes (resulting in 216 genes) and top 1% of CpG methylation probes (resulting
in 3212 methylation probes) whose expression and methylation, respectively, is most predictive of the cluster assignment (done
by the spectral clustering on the SNF fused similarity matrix) of samples in the training set. This feature selection procedure was
repeated in each training / testing split of the data set, using the training set only.
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All analyses were performed in R version 3.2.3. We used the glmnet package for Elastic Net, Lasso, and Ridge; the rpart package
for Decision tree; the randomForest package for Random forest, the kernLab package for SVM. Training of Random forest and SVM
was done using the caret package. The AUPRC (area under the precision-recall curve) values were calculated using the PRROC
package.

Training and Selection of the Classifiers
We performed five classification tasks: the medulloblastoma subgroup classification, and then subtype classification within each of
the four medulloblastoma subgroups. Cluster assignment by spectral clustering on the SNF fused similarity matrix was taken as the
ground truth label assignment for the study cohort subgroup and subtype classification. For each of these tasks we trained 7 clas-
sification models using the concatenation of the top 1% expression and the top 1% methylation features as feature set.

For each task, we split the study cohort data set randomly to 70% training set and 30% testing set splits. The top 1% feature
selection procedure, as described above, was then run on the training set. The selected features were used for both training and
testing of the classifiers. Individual classification models were subsequently trained in 5-fold cross validation on the training set.
On the testing set we measured the performance of the classifiers in the terms of classification accuracy and the area under the
precision-recall curve (AUPRC). The entire described procedure was repeated 100 times. We report AUPRC and accuracy means
and standard deviation over these 100 runs, as well as the average percentages of subtype predicted for the reference subtypes
(Table S2).

COCA Analysis
We performed the COCA analysis as described in the TCGA pan cancer paper (Hoadley et al., 2014). We applied NMF clustering on
gene expression and DNA methylation data individually for each subgroup. We proceeded to create a matrix of 0 and 1 with all the
samples (as column) and the different groups (as row, one row per group obtained for each clustering). 1 indicated the presence of a
sample in a group. This matrix was then clustered with k-means consensus clustering as performed in the TCGA pan cancer paper.

iCluster Analysis
We also performedmulti-platform clustering using iCluster.We applied the RBioconductor IClusterPlus package (the newest version
of iCluster) to perform the analysis (Shen et al., 2009; Mo et al., 2013). It is necessary to select a set of features for each dataset to run
iCluster. We tested selection of features on the maximum variance and on the MAD (median absolute deviation) and different per-
centages of features. We selected the top 15%most variable expressed genes and 1%most variable methylated probes as defined
by median absolute deviation. We chose these numbers to allow for an equal representation of variable genes and methylated
probes, which resulted in 3000 features per dataset. We performedmultiple clusterings with different values of the lambda parameter
and settled on Lambda =1. After performing the clustering, we confirm that almost all features are used to some degree in the model
which implies that the results are not entirely driven by one data type. Indeed, this reassured us that the parameters we selected
would allow for a robust multi-platform integrated analysis.

When applying iCluster across the entire dataset, we are unable to recover the 4 subgroups of medulloblastoma at k=4. When
comparing the demographics of these 4 groups, and cross referencing to the SNF subgroups, WNT and Group 3 cluster together
with two SHH groups emerging. When we increased to 5 groups we are able to clearly split WNT and Group 3. To determine the
congruence between iCluster and SNF in defining the subtypes of subgroups, we first defined the subtypes using SNF, and then
applied iCluster individually to each subgroup. Overall the subtypes as defined by iCluster were in agreement with SNF/Spectral clus-
tering groups in 72-84% of instances. When we take into account that in some instances, iCluster recovered similar subtypes at a
different number of groups, then the agreement increases to 74-90% (for example, some groups in iCluster split in two but corre-
spond strongly to one cluster by SNF).

DATA AND SOFTWARE AVAILABILITY

The expression andmethylation array data has been deposited in GEO under the accession number GSE85218. The previously pub-
lished data is available in GEO under the accession numbers GSE37382 and GSE37384.
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There is significant intertumoral heterogeneity within the four molecular subgroups of medulloblastoma. In
this issue ofCancer Cell, Cavalli et al. apply similarity network fusion to gene expression andDNAmethylation
data to identify 12 medulloblastoma subtypes with distinct molecular and clinical profiles, making an impor-
tant step toward molecularly tailored therapy.

Medulloblastoma (MB) is the most com-
mon malignant brain tumor in children
(Ostrom et al., 2014). Historically, MB
patients have been stratified as average
risk (AR) or high risk (HR) based on clinical
features and tumor histopathology, with
HR-MB patients receiving higher doses
of radiation therapy (RT). With conven-
tional therapy—i.e., maximal safe tumor
resection, RT to the whole brain and
spine, and chemotherapy—5 year overall
survival (OS) for AR-MB and HR-MB are
!80% and !70%, respectively (Gajjar
et al., 2006).
Two fundamental challenges must be

overcome to improve the care of children
with MB. The first is to identify MB pa-
tients who can be treated effectively on
regimens that either omit or reduce
dosing of RT. Being cured of MB comes
at a significant neurocognitive cost to
survivors, with decreases in intelligence
quotient (IQ) and cognitive functioning
that correlate with higher RT dose and
younger age at treatment (Ris et al.,
2001). A reduction in radiation therapy
has been successfully accomplished
without significantly compromising sur-
vival for one specific subset of MB pa-
tients under the age of 5 years (infant
MB): those with desmoplastic nodular
or medulloblastoma with excessive nodu-
larity (DNMB/MBEN) architecture (Rut-
kowski et al., 2010). Unfortunately, this
group accounts for only a minority of MB
patients.
The second challenge is to improve sur-

vival for MB patients who do not respond
well to current therapies. It has long been
known that MB is a very heterogeneous

disease with varied clinical outcomes. In
the last decade, our understanding of
the biology underlying this heterogeneity
has improved exponentially after multiple
studies showed that MB can be classified
into discrete subgroups based on gene
expression or DNA methylation profiling,
culminating in the identification of four
subgroups with distinct molecular profiles
and correlated clinical outcomes (Fig-
ure 1A): WNT, Sonic Hedgehog (SHH),
Group 3, and Group 4 (Kool et al., 2012;
Northcott et al., 2011; Ramaswamy
et al., 2016). WNT-subgroup MB has the
best prognosis, with a 5-year OS >90%
for average-risk disease, whereas Group
3 MB has the worst prognosis, especially
when associated with MYC amplification.
While SHH subgroup and Group 4MB pa-
tients are considered to have an interme-
diate prognosis overall, studies have
demonstrated that there is a wide varia-
tion in patient outcomes within each sub-
group (Ramaswamy et al., 2016; Zhukova
et al., 2013). A recent consensus state-
ment proposed to redefine the risk stratifi-
cation of MB into four groups: low,
average, high-risk, and very-high-risk pa-
tients (Ramaswamy et al., 2016). A salient
feature of this new classification system
is that tumors from the same molecular
subgroup can fall into different risk groups
based on the presence or absence of
certain molecular and clinical features.
For example, studies have shown that
in the SHH subgroup, patients with
tumors with TP53 mutation have a dismal
prognosis, whereas younger patients
(<3 years) whose tumors are TP53 wild-
type have amore favorable outcome (Zhu-

kovaetal., 2013).Abetterbiologicalunder-
standing of the heterogeneity within these
subgroups isneeded to reliably risk-stratify
MB patients in order to identify high-risk
patients in need of novel treatment ap-
proaches and low-risk patients for whom
therapy can be safely de-escalated to
reduce long-term adverse sequelae.

In this issue of Cancer Cell, Cavalli et al.
further define the intertumoral heteroge-
neity within each of the four known MB
subgroups through the integrated molec-
ular profiling of a largeMB dataset (Cavalli
et al., 2017). The investigators have uti-
lized a similarity network fusion (SNF)
approach to analyze genome-wide DNA
methylation and gene expression data
across 763 MB samples, identifying a
total of 12 subtypes with distinct molecu-
lar and clinical features (Figure 1A). These
subtypes could not be recapitulated using
either DNA methylation or gene expres-
sion profiling alone, instead requiring the
combination of the two methods.

This improved understanding of the in-
tertumoral heterogeneity within MB sub-
groups is a crucial step toward improving
outcomes for MB patients through
personalized risk-adapted therapy. The
current study by Cavalli et al. accounts
for the disparity in outcomes previously
noted in SHH-MB patients by delineating
four SHH subtypes (Figure 1B): two with
a good prognosis (SHH g/infants; SHH
d/adults) and two with a poor prognosis
(SHH b/infants; SHH a/children 3–16
years). Importantly, the SHH g subtype
consists of young patients (<3 years)
with excellent survival, even for those
with tumors that do not have the
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traditionally favorable MBEN histopathol-
ogy, suggesting that the molecular signa-
ture of these tumors is a more powerful
biomarker than histopathology alone and
potentially broadening the group of young
MB patients for whom radiation might be
avoided without a compromise in survival
(Figure 1C). On the other hand, this study
also highlights the ‘‘bad players’’ among
young MB patients who would likely not
be good candidates for de-escalation of
therapy. Infant SHH-MB (<3 years) pa-
tients who are not in the SHH g subtype
generally have SHH b tumors; these tu-
mors are frequently metastatic and have
multiple focal chromosomal amplifica-
tions, and these patients have a worse
overall survival, meriting therapy escala-
tion and/or novel treatment approaches.
The 2016 World Health Organization
(WHO) classification of central nervous
system (CNS) tumors recognizes ‘‘SHH-
activated and TP53-mutant’’ MB as a
distinct entity based on previous evidence
of the very poor prognosis of these tumors
(Louis et al., 2016). Cavalli et al. take this a
step further and show that TP53 muta-
tions are only prognostic in theSHHa sub-
type, compared to non-SHH a subtypes.

Another limitation of the current molec-
ular subtyping of MB with either DNA
methylation profiling or gene expression
analysis alone is an overlap between
Group 3 and Group 4 MB, as compared
to WNT and SHH subgroups that are
more distinct and have pathognomonic
molecular aberrations. This ambiguity is
reflected in the 2016 WHO classification
of CNS tumors, which defines Group 3
and Group 4 subgroups as a single entity,
‘‘non-WNT/non-SHH MB’’ (Louis et al.,
2016). The present study more clearly
delineates these two subtypes, providing
evidence that they are distinct from one
another. Interestingly, Cavalli et al. found
that the set of overlapping Group 3 and
Group 4 tumors identified by DNAmethyl-
ation profiling was different than that iden-
tified using gene expression analysis, sug-
gesting that this is more a function of the
testingmodality rather than biology. Using
SNF, the authors could make a clearer
distinction between these two subgroups,
with only 0.64% of samples not tracking
back to their original subgroup.
Finally, the authors performed pathway

enrichment analysis using the top 10% of
associated genes across each of the

12 MB subtypes. Significantly enriched
pathways were identified for all subtypes,
including MAPK and FGFR1 signaling in
Group 4b, RTK signaling in SHH g, DNA
repair pathways in SHH a, and pathways
involved in protein translation in Groups
3b and 3g. Many of these pathways are
potentially targetable by novel agents,
highlighting intriguing areas for future
research in efforts to improve MB out-
comes, especially for the subtypes with
poor response to current conventional
therapies.
This report from Cavalli et al. represents

a significant contribution to the evolving
understanding of MB as a group of
genomically, biologically, and clinically
diverse diseases. Moving forward, it will
be critical to build upon these findings to
develop biomarkers for identification of
MBsubtypes in thecontextof clinical trials,
facilitating the prospective study of out-
comes in uniformly treated patient popula-
tions and stratification of therapies tailored
to the clinical and molecular features of
each subtype. De-escalation of therapy
could be evaluated for subtypes with an
excellent prognosis, such as the WNT
and SHH g subtypes. Conversely, for

Figure 1. Use of Similarity Network Fusion to Characterize the Intertumoral Heterogeneity of Medulloblastoma
(A) Wnt, SHH, Group 3, and Group 4 are the four known molecular subgroups of medulloblastoma (MB). Similarity network fusion (SNF) was used to identify
distinct subtypes within each subgroup. (B) There is wide variation in age at presentation and clinical outcomes (green, yellow, and red circles denote good,
intermediate, and poor outcomes, respectively) for patients with SHH subgroup MB. SNF identified four distinct molecular subtypes within the SHH subgroup,
each with characteristic age at presentation and clinical outcome. (C) Radiation can be avoided or deferred while maintaining good survival in young children with
the DNMB/MBEN histology. The SHH g subtype of MB occurs in young children and was associated with an excellent prognosis, irrespective of histopathology,
potentially increasing the number of young patients for whom radiation might be reduced.
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subtypes associated with poor response
to conventional therapies, novel treatment
approaches and agents targeting impli-
cated pathways can be investigated.
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Paradoxical Effects of MLL Paralogs
in MLL-Rearranged Leukemia
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Conflicting data exist on the requirement for wild-type MLL1 in MLL-rearranged leukemia. In this issue of
Cancer Cell, Chen et al. describe complementary approaches demonstrating that MLL1 is dispensable for
MLL-fusion-mediated leukemogenesis. They also observe an unexpected role for MLL2 in MLL-rearranged
leukemia cells and identify potential therapeutic targets.

11q23 translocations result in the forma-
tion of MLL1 fusion genes that act
as potent drivers of acute myeloid
and acute lymphoblastic leukemia and
confer a poor prognosis. MLL1 fusion pro-
teins, which are formed as a result of
these translocations, contribute to leuke-
mogenesis by imposing an aberrant
transcription program. The critical conse-
quence of 11q23 chromosomal transloca-
tions is the formation of a chimeric onco-
genic transcription factor that retains the
amino terminus of MLL1 but replaces
carboxyl-terminal domains, including the
SET domain, with sequences from its
partner proteins (Figure 1). As a result of
11q23 gene rearrangements, MLL fuses
in frame with more than 70 different part-
ner proteins. The most common partners
are AF4, AF9, ENL, AF10, and ELL, which
together account for over 85% of all MLL-
rearranged leukemias. AF4, AF5q31, ENL,
AF9, and ELL form a super elongation

complex (SEC) that recruits the positive
regulator of Pol II transcription elongation
factor b (P-TEFb) kinase and the histone-3
lysine-79 methyltransferase DOT1L (Lin
et al., 2010). The recruitment of the activ-
ities of the partner protein complex to
MLL1 targets is a key molecular mecha-
nism in MLL1 fusion protein-induced dys-
regulation of gene expression. Aberrant
transcriptional elongation and H3K79
methylation lead to inappropriate activa-
tion of certain targets, including the
HOXA cluster and MEIS1, that are critical
to the transforming properties of MLL
fusions.
Leukemia cells that harbor 11q23

translocations express one MLL1 fusion
gene and one wild-type (WT) MLL1 allele.
Prior studies on the importance of the re-
maining WT allele of MLL1 in MLL1-
fusion leukemia have yielded confound-
ing results, leading Chen and colleagues
(2017) in this issue of Cancer Cell to un-

dertake a rigorous series of experiments
to address this issue. MLL-rearranged
leukemia cells also express MLL2, a pa-
ralog of MLL1 that regulates distinct
sets of target genes. Chen and col-
leagues also analyzed the role of MLL2
in MLL1-rearranged leukemia, which
had previously not been examined.

MLL1 (KMT2A) is critical for the main-
tenance of expression of its target genes,
and it mediates chromatin modifications
associated with transcriptional activa-
tion. A SET domain in the car-
boxy terminus of MLL1, conserved with
Set1 in S. cerevisiae, acts as a his-
tone-3 lysine-4 (H3K4) methyltransfer-
ase. Germline deletion of Mll1 resulted
in embryonic lethality, with embryos ex-
hibiting hematopoietic and skeletal de-
fects, and loss of Hoxa-7 and Hoxc-9
expression (Yu et al., 1995). Mll1 het-
erozygous mice exhibited growth
retardation, anemia, thrombocytopenia,
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