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Integrated proteomic analysis of low-grade 
gliomas reveals contributions of 1p-19q 
co-deletion to oligodendroglioma
Derek Wong1,2, Tae Hoon Lee2, Amy Lum2, Valerie Lan Tao1 and Stephen Yip1,2*   

Abstract 

Diffusely infiltrative low-grade gliomas (LGG) are primary brain tumours that arise predominantly in the cerebral hemi-
spheres of younger adults. LGG can display either astrocytic or oligodendroglial histology and do not express malig-
nant histological features. Vast majority of LGG are unified by IDH mutations. Other genomic features including ATRX 
as well as copy number status of chromosomes 1p and 19q serve to molecularly segregate this tumor group. Despite 
the exponential gains in molecular profiling and understanding of LGG, survival rates and treatment options have 
stagnated over the past few decades with few advancements. In this study, we utilize low grade glioma RNA-seq data 
from the Cancer Genome Atlas (TCGA-LGG) and tandem mass-spectrometry on an in-house cohort of 54 formalin-
fixed paraffin-embedded (FFPE) LGG specimens to investigate the transcriptomic and proteomic profiles across the 
three molecular subtypes of LGG (Type I: IDH mutant – 1p19q co-deleted, Type II: IDH mutant – 1p19q retained, Type 
III: IDH wildtype). Within the 3 LGG subtypes, gene expression was driven heavily by IDH mutation and 1p19q co-
deletion. In concordance with RNA expression, we were able to identify decreased expressions of proteins coded in 
1p19q in Type I LGG. Further proteomic analysis identified 54 subtype specific proteins that were used to classify the 
three subtypes using a multinomial regression model (AUC = 0.911). Type I LGG were found to have increased protein 
expression of several metabolic proteins while Type III LGG were found to have increased immune infiltration and 
inflammation related proteins. Here we present the largest proteomic cohort of LGG and show that proteomic profiles 
can be successfully analyzed from FFPE tissues. We uncover previously known and novel subtype specific markers that 
are useful for the proteomic classification of LGG subtypes.
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Introduction
Diffusely infiltrative Low grade glioma (LGG) are pri-
mary tumours of the brain classified as grade 2/3 neo-
plasms by the World Health Organization (WHO) and 
arise primarily in the cerebral hemispheres of younger 
adults [1]. Despite the exponential gains in molecular 

profiling and understanding of LGG, survival rates 
and treatment options have stagnated over the past 
few decades with few advancements [2]. With the 
2021 update to the WHO classification of tumours of 
the central nervous system, the use of molecular data, 
namely IDH mutation and whole arm codeletion of 
chromosomes 1p and 19q, now supersedes classical 
histology based classification of LGG [1]. Using these 
molecular markers, LGGs can now be stratified into 
three molecularly distinct prognostic subgroups. Oli-
godendroglioma (ODG) and astrocytoma are both 
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classified by mutations in IDH1 or IDH2 (IDH) with the 
former also harboring 1p19q codeletion and the later 
retaining 1p19q [3]. ODG are also associated with CIC 
mutations (up to 70%) [4]5, while IDH- mutant astrocy-
toma frequently harbour mutations in TP53 and ATRX 
[6]. The remaining tumours which lack IDH mutations 
are termed IDH wildtype glioblastoma (GBM) and are 
most often associated with TERT promoter mutations, 
gains of chromosome 7/EGFR, and loss of chromosome 
10, characteristic of high grade (grade 4) GBM [7].

Current treatment for LGG varies depending on the 
molecular subtype, grade, and location/resection and 
can include clinical monitoring, chemotherapy (procar-
bazine/CCNU/vincristine or PCV and temozolomide), 
and radiotherapy. Clinically, ODG tumours respond well 
to radio- and chemotherapy and are associated with the 
best prognosis [8]9. Conversely, IDH wildtype tumours, 
even in the absence of high grade histology, are associ-
ated with the worst prognosis and IDH mutant astro-
cytoma are associated with a variable but intermediate 
response [10]11. A subset of these tumours, regardless 
of molecular subtype, will progress towards high grade 
GBM and death.

While our understanding of LGG biology has made 
tremendous progress, the vast majority of these dis-
coveries have been within the genomic [3], transcrip-
tomic [12, 13], and epigenomic [14, 15] space with little 
exploration in the proteomic landscape of LGG. Recent 
advances in proteomic profiling capabilities have ena-
bled to use of formalin fixed paraffin embedded (FFPE) 
tissues which greatly increase the ease of sample cura-
tion and may facilitate further insights into the drivers 
of response within the 3 subtypes [16, 17],18. In GBM, 
proteomic profiling has demonstrated the ability to strat-
ify patient survival independent of transcriptomic and 
pathway signatures [19–21][22]. Discordant transcrip-
tome and proteome suggest that proteomic studies may 
provide advantages for the discovery of actionable targets 
that translate into clinical and immunohistochemical 
validation.

In this study, we utilise low grade glioma RNA-seq 
data from the Cancer Genome Atlas (TCGA-LGG) to 
investigate the transcriptomic profiles across the three 
molecular subtypes of LGG and find that IDH mutation 
and 1p19q co-deletion drive genome wide transcriptomic 
profiles. Interestingly, while CIC mutations within ODGs 
were associated with increased receptor tyrosine kinase 
(RTK) activation, it did not result in robust differential 
clustering on a global transcriptomic level. We further 
explore the proteomic landscape of LGG by performing 
tandem mass-tagged mass spectrometry on a cohort of 
in-house genomically characterized FFPE LGG. Prote-
ogenomic analysis uncovered previously identified and 

novel protein biomarkers in LGG which were used to 
build a subtype classifier.

Materials and methods
Patient cohort
Formalin fixed paraffin embedded and fresh frozen 
tumour samples analyzed were from 108 adults with pre-
viously untreated LGG (WHO grades 2/3), including 45 
oligodendrogliomas, 45 astrocytomas, and 18 glioblasto-
mas from Vancouver General Hospital. Diagnoses were 
established from routine neuropathological and molecu-
lar workup at Vancouver General Hospital and reviewed 
by a neuropathologist for this study. Patient cohorts are 
described in Additional file  6: Table  S1. This study was 
approved by the institutional review board (H08-2838) 
and informed written consent was obtained from all 
patients.

Targeted DNA panel sequencing
Genomic DNA was extracted using the AllPrep DNA/
RNA FFPE kit (Qiagen) or AllPrep DNA/RNA kit (Qia-
gen) depending on sample type (FFPE or snap frozen). 
Custom DNA panel was designed on the Illumina Design-
Studio (Illumina) using hg19 as the reference genome. 
Panel design can be found in Additional file 7: Table S2. 
Library preparation was performed using Ampliseq for 
Illumina On-Demand, Custom and Community panels 
according to manufacturer’s protocol. Sequencing was 
performed on an Illumina MiSeq with using a 600 cycle 
(v3) kit with Paried End 150  bp reads with an average 
depth of 1371.84X (Additional file  8: Table  S3). Assem-
bly was estimated using Cufflinks (http:// cole- trapn elllab. 
github. io/ cuffl inks/) through bioinformatics apps avail-
able on Illumina Sequence Hub [23]. Single nucleotide 
variants were detected using Mutect (v1.1.5) [24]. Inser-
tions and Deletions were detected using Strelka (v2.9.9) 
[25]. Copy number variations for chromosomes 1p and 
19q were called using OncoCNV (v.1.2.0) [26].

Tissue lysis and enzymatic digestion for proteomic analysis
Tissue processing was carried out as described previously 
[16]. FFPE tissue Sects. (2 × 10 µm scrolls) were provided 
on glass slides for processing. Tissue was scraped and sus-
pended with lysis buffer (100 mM HEPES pH 8 [H3375, 
Sigma], 4% SDS [L6026, Sigma], 10  mM TCEP [C4706, 
Sigma], 40  mM CAA [C0267, Sigma], and 1 × complete 
protease inhibitor – EDTA free [4693159001, Sigma]). 
Mixtures were heated at 90  °C for 90  min, and chilled 
to room temperature for 15 min. Protein from flash fro-
zen tissue samples were extracted using AllPrep DNA/
RNA/Protein Mini Kit (80,004, Qiagen). Prior to diges-
tion, samples were cleaned using a variation on the SP3 
protocol [17]. Briefly, to each protein mixture, 200  μg 
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of SP3 beads was added and mixed. To induce protein 
binding to the beads, 100% by volume of acetonitrile was 
added per sample. Bead-protein solutions were mixed 
and incubated for a total of 10  min at room tempera-
ture then placed on a magnetic rack for 2  min and the 
supernatant discarded. The beads were rinsed twice with 
180μL of freshly prepared 70% ethanol and once with 
180μL of 100% ethanol. Rinsed beads were reconstituted 
in aqueous buffer (~ 50μL, 0.2 M HEPES pH 8) contain-
ing a 1:50 (μg:μg) enzyme to protein amount of trypsin/
LysC mix (Promega, CAT#V5071), and briefly sonicated 
in a water bath (30 s) to disaggregate the beads. Mixtures 
were incubated for 14 h at 37 °C in a PCR thermocycler 
then sonicated briefly (10 s) in a water bath to resuspend 
the beads. The supernatants were recovered using a mag-
netic rack and transferred to fresh 1.5 mL polypropylene 
micro-tubes.

TMT labeling
Prior to labeling, TMT labels were removed from the 
−80  °C freezer and allowed to equilibrate at room tem-
perature. TMT label was added in two volumetrically 
equal steps to achieve a 2:1 (μg:μg) TMT label to pep-
tide final concentration, 30  min apart. All incubations 
were carried out at room temperature. Reactions were 
quenched with glycine. Labeled peptides were concen-
trated in a SpeedVac centrifuge, combined, and run 
through a SepPak cartridge for clean-up prior to HPLC 
fractionation.

HPLC fractionation
High-pH reversed phase analysis was performed on an 
Agilent 1100 HPLC system equipped with a diode array 
detector (254, 260, and 280 nm). Fractionation was per-
formed on a Kinetix EVO C18 column (2.1 × 150  mm, 
1.7 μm core shell, 100 Å, Phenomenex). Elution was per-
formed at a flow rate of 0.2 mL per minute using a gradi-
ent of mobile phase A (10 mM ammonium bicarbonate, 
pH 8) and B (acetonitrile), from 3 to 35% over 60  min. 
Fractions were collected every minute across the elution 
window for a total of 48 fractions, which were concate-
nated to a final set of 12 (e.g. 1 + 13 + 25 + 37 = fraction 
1). Fractions were dried in a SpeedVac centrifuge and 
reconstituted in 1% formic acid with 1% DMSO in water 
prior to MS analysis.

Mass spectrometry analysis
Analysis of TMT labeled peptide fractions was carried 
out on an Orbitrap Fusion Tribrid MS platform (Thermo 
Scientific). Samples were introduced using an Easy-nLC 
1000 system (Thermo Scientific). Columns used for 
trapping and separations were packed in-house. Trap-
ping columns were packed in 100 μm internal diameter 

capillaries to a length of 25 mm with C18 beads (Repro-
sil-Pur, Dr. Maisch, 3  μm particle size). Trapping was 
carried out for a total volume of 10 μL at a pressure of 
400 bar. After trapping, gradient elution of peptides was 
performed on a C18 (Reprosil-Pur, Dr. Maisch, 1.9  μm 
particle size) column packed in-house to a length of 
15  cm in 100  μm internal diameter capillaries with a 
laser-pulled electrospray tip and heated to 45  °C using 
AgileSLEEVE column ovens (Analytical Sales & Service). 
Elution was performed with a gradient of mobile phase 
A (water and 0.1% formic acid) and B (acetonitrile and 
0.1% formic acid) over 120-min at a flow rate of 300nL/
min. Data acquisition on the Orbitrap Fusion (control 
software version 2.1.1565.20) was carried out using a 
data-dependent method with multi-notch synchronous 
precursor selection MS3 scanning for TMT tags. Sur-
vey scans covering the mass range of 350 – 1500 were 
acquired at a resolution of 120,000 (at m/z 200), with 
quadrupole isolation enabled, an S-Lens RF Level of 60%, 
a maximum fill time of 50 ms, and an automatic gain con-
trol (AGC) target value of 5e5. For MS2 scan triggering, 
monoisotopic precursor selection was enabled, charge 
state filtering was limited to 2 – 4, an intensity threshold 
of 5e3 was employed, and dynamic exclusion of previ-
ously selected masses was enabled for 60 s with a toler-
ance of 20 ppm. MS2 scans were acquired in the ion trap 
in Rapid mode after CID fragmentation with a maximum 
fill time of 150  ms, quadrupole isolation, an isolation 
window of 1 m/z, collision energy of 30%, activation Q of 
0.25, injection for all available parallelizable time turned 
OFF, and an AGC target value of 4e3. Fragment ions 
were selected for MS3 scans based on a precursor selec-
tion range of 400-1200 m/z, ion exclusion of 20 m/z low 
and 5 m/z high, and isobaric tag loss exclusion for TMT. 
The top 10 precursors were selected for MS3 scans that 
were acquired in the Orbitrap after HCD fragmentation 
(NCE 60%) with a maximum fill time of 150 ms, 50,000 
resolution, 110–750 m/z scan range, ion injection for all 
parallelizable time turned OFF, and an AGC target value 
of 1e5. The total allowable cycle time was set to 4 s. MS1 
and MS3 scans were acquired in profile mode, and MS2 
in centroid format.

Mass spectrometry data analysis
Data from the Orbitrap Fusion were processed using Pro-
teome Discoverer Software (ver. 2.1.1.21) [27]. MS2 spec-
tra were searched using Sequest HT against a combined 
UniProt Human proteome database appended to a list of 
common contaminants (24,624 total sequences). Sequest 
HT parameters were specified as: trypsin enzyme, 2 
missed cleavages allowed, minimum peptide length of 
6, precursor mass tolerance of 20  ppm, and a fragment 
mass tolerance of 0.6. Oxidation of methionine, and 
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TMT at lysine and peptide N-termini were set as variable 
modifications. Carbamidomethylation of cysteine was 
set as a fixed modification. Peptide spectral match error 
rates were determined using the target-decoy strategy 
coupled to Percolator modeling of positive and false dis-
tributions [27, 28]. Data were filtered at the peptide spec-
tral match-level to control for false discoveries using a 
q-value cut-off of 0.01 as determined by Percolator. Data 
sets generated in Proteome Discoverer were exported 
and analyzed with a combination of scripts built in R 
designed in-house. Contaminant and decoy proteins 
were removed from all data sets prior to downstream 
analysis.

Transcriptomic analyses
RNA-sequencing results were obtained from TCGA 
using http:// fireb rowse. org/ doi: 10. 7908/ C11G0 KM9 and 
mutation and copy number data were obtained from 
TCGA using http:// www. cbiop ortal. org/ [29]. DEA was 
performed using the R package DEseq2 [30].

Gene set enrichment analysis
The Metascape software https://  metas cape. org was used 
to perform functional enrichments using the multiple 
gene lists mode [31]. Gene ontology (GO) Biological Pro-
cesses, Hallmark Gene Sets and Oncogenic Signatures 
were used for enrichment analyses of all DE genes, with 
a p-value cut-off of 0.05, and a minimum enrichment of 
1.5. Only terms with a BH-adjusted p-value < 0.05 were 
retained.

Results
LGG transcriptome driven by IDH mutation and 1p/19q 
co‑deletion
To investigate the transcriptome profiles of LGG, we 
utilised the publicly available mRNA-seq data from the 
TCGA lower grade glioma (TCGA-LGG) data set and 
annotated samples based upon the status of IDH and 
1p19q. IDH- mutant/1p19q- codeleted LGG were labeled 
as Type I (n = 91), IDH- mutant/1p19q- retained LGG 
were termed as Type II (n = 100), and IDH- wildtype 
LGG were labeled as Type III (n = 54; Fig.  1A). TCGA-
LGG samples segregated into their respective molecular 
subgroups using unsupervised clustering of the top 500 
variably expressed (median absolute deviation) genes 
(Fig. 1B). Differential expression analysis (DEA) between 
the three molecular subgroups identified 2476 (I vs II), 
4593 (I vs III), and 3071 (II vs III) differentially expressed 
(DE) genes (Fold change > 1.5, padj < 0.01; Additional 
file 9: Table S4). When factoring the location of each DE 
gene, we observed an enrichment of DE genes located on 
1p and 19q in Type I LGG suggesting that the hallmark 
1p19q co-deletion drives its transcriptomic signature 

(Fig.  1C and D). This enrichment was not observed 
between Type II and Type III LGG (Fig.  1E). Gene set 
enrichment analysis (GSEA) between the three molecu-
lar subgroups revealed upregulation of neuronal and glial 
differentiation signatures in Type I, cytoskeletal mor-
phogenesis in Type II, and angiogenesis, receptor tyros-
ine kinase (RTK) signaling, and inflammatory signatures 
in Type III (Additional file  1: Fig S1, Additional file  10: 
Table S5).

Type I LGG CIC mutations do not result in distinct 
transcriptomic signatures
Studies have shown Type I LGGs with loss of function or 
missense CIC mutations exhibit dysregulation of path-
ways involved in RTK signaling [32–34]. Interestingly, 
while CIC mutations have not been found to correlate 
with survival [35], loss of CIC protein expression has 
been correlated with decreased survival [36]. This may 
suggest that Type I LGG may be stratified based upon 
CIC protein status and may explain the lack of CIC-tran-
scriptome- driven clustering within Type I LGG observed 
in Fig. 1B. Few studies have also investigated the differ-
ences between CIC loss of function and missense muta-
tions. CIC missense mutations most often occur in exon 
5 which contains the DNA binding domain, or exon 19 
which contains the C1-motif responsible for stabilizing 
CIC-DNA interaction [37]. To investigate this further, 
unsupervised clustering was performed using only Type 
I LGG samples (top 500) which did not result in CIC-sta-
tus dependent clustering (Additional file 2: Fig. S2).

Within Type I LGG, we further subdivided these 
samples based upon CIC mutation status: wildtype 
(WT, n = 53), loss of function (LOF, n = 23), and mis-
sense mutations (n = 15). LOF mutations were clas-
sified as truncating frameshift or stop mutations and 
missense mutations were only included if they resided 
within exon 5 (HMG DNA binding domain) or exon 20 
(C1 motif ). DEA was performed between these three 
subgroups and identified 564 (WT vs LOF), 420 (WT 
vs missense), and 23 (LOF vs missense) DE genes (Fold 
change > 1.5, padj < 0.05; Fig.  2A, Additional file  11: 
Table S6). Comparison of DE genes between CIC LOF 
and missense mutant samples identified 127 overlap-
ping genes with high directional concordance includ-
ing known CIC targets (ETV1, ETV4, ETV5, DUSP4, 
DUSP6, SPRY4, SHC3; Fig. 2B). GSEA identified several 
terms related to regulation of RTK signaling and neural 
differentiation in both CIC LOF and missense tumours 
(Fig.  2C and D, Additional file  12: Table  S7) suggest-
ing that CIC missense and LOF mutations result in 
similar biological consequences on a global transcrip-
tomic level. However, within the 23 DE genes identi-
fied between CIC LOF and CIC missense mutant Type 
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I LGG, CIC LOF mutants were found to have increased 
expression of several genes related to vasculature 
development and endothelial cell migration (CD34, 
HPGD, SRPX2, ANGPT4, DCN, TIMP1; Additional 

file  12: Table  S7). CIC missense mutant Type I LGG 
also had increased CIC expression and decreased 
ETV4 expression suggesting that missense mutations 
may not lead to mRNA transcript decay and are not as 

Fig. 1 A Schematic for classification of LGG subtypes based upon molecular information. B Unsupervised clustering and heatmap of TCGA LGG 
samples based upon molecular information. C-E Left: Volcano plot of differentially expressed genes. Right: Ratio of number of up and down 
regulated genes identified on chromosomes 1p/q and 19p/q. Bottom: Chromplot of the locations of up and downregulated genes identified 
through differential expression analysis
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fully penetrant as CIC LOF mutations [32](Additional 
file 11: Table S6).

Curating an in‑house cohort of LGG
To begin our proteomic investigation, we curated an in-
house cohort of untreated LGG and performed targeted 
sequencing to determine their molecular subtype. The 
targeted sequencing panel was designed to target glioma 
related genes (IDH1/2, TP53, ATRX, CIC, FUBP1, EGFR, 
PTEN, CDKN2A/B, NF1, PIK3CA/R1, BRAF, hTERT 
promoter) and included probes to determine copy num-
ber status of chromosomes 1p/19q, CDKN2A/B, PTEN, 
and EGFR. A total of 108 samples (57 FFPE and 51 fresh 
frozen) were collected and DNA extracted. Sequencing 
identified a total of 45 Type I, 45 Type II, and 18 Type 

III tumours with some tumours being reclassified com-
pared to their clinical diagnosis, many which were per-
formed prior to the addition of molecular subtyping by 
the 20WHO (Fig. 3, Additional file 13: Table S8). Within 
Type I tumours, 30 mutations were identified in CIC (20 
LOF and 10 missense) which is consistent with previ-
ously published studies [4, 5].

Proteomic signatures are not as pronounce 
as transcriptomic signatures
To explore the proteomic differences between the three 
LGG subgroups, we performed HPLC fractionation fol-
lowed by tandem mass-tagged mass spectrometry on a 
cohort of 54 FFPE samples (6 normal brain, 21 Type I, 17 
Type II, 10 Type III). Mass spectrometry identified a total 

Fig. 2 A Volcano plots showing differentially expressed genes identified between TCGA CIC mutation groups within Type I LGG. B Comparison of 
expression between differentially expressed genes identified in CIC LOF and CIC missense Type I LGGs C Heatmap of gene set enrichment analysis 
comparison between CIC LOF and CIC missense Type I LGG D) Gene set enrichment analysis for up (top) and down (bottom) regulated differentially 
expressed genes shared between CIC LOF and CIC missense Type I LGG. * Gene sets in red related to MAPK/RTK and blue related to neuronal/
development/differentiation
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of 7988 proteins. After filtering and keeping only proteins 
identified in all mass spectrometry runs, 5894 proteins 
remained (Additional file  14: Table  S9). Unsupervised 
clustering using the top 500 variable expressed (median 
absolute deviation) proteins showed that all 3 LGG sub-
types clustered separately from the normal brain con-
trols. However, clustering was variable between the three 
subtypes (Fig. 4A). Most of the Type I and Type III sam-
ples formed two clusters, while Type II samples were 
dispersed amongst Type I and Type III clusters. Look-
ing at canonical LGG molecular markers, all three LGG 
subtypes expressed higher levels of IDH1 and EGFR and 
lower levels of IDH2 compared to normal brain (Fig. 4B). 
Type III LGG expressed the highest levels of IDH1 which 
has been shown to contribute to their therapeutic resist-
ance [38]. Type II expressed the highest levels of TP53, 
consistent with recurrent TP53 mutations in Type II, and 
Type III expressed the highest level of EGFR and lowest 
level of PTEN; again, consistent with recurrent EGFR 
amplification and PTEN deletions in Type III. Surpris-
ingly, no differences were detected between subtypes 
in TERT, ATRX, or CIC; the former two being clinical 
molecular markers.

Previous protein analysis by TCGA using Reverse 
Phase Protein Array (RPPA) had identified increased 

phosphorylated HER3 in Type I, increased expression 
of SYK, CDH1, and ANXA1 in Type II, and increased 
expression of HER2 in Type III LGG [3]. Similar to 
TCGA, we also observed increased expression of SYK 
and ANXA1 in Type II compared to Type I but lev-
els were similar compared to Type III LGG (Additional 
file 4: Fig. S4A). Expression of CDH1, HER2, and HER3 
were not identified in our cohort and were not looked 
into. Protein expression of canonically LGG-associated 
proteins such as TP53, EGFR, and PTEN showed similar 
trends compared to our cohort (Additional file 4: Fig. S4B 
and Additional file 15: Table S10).

In our transcriptomic analyses, Type I LGGs were 
found to be heavily driven by 1p19q co-deletion. To inves-
tigate whether this transcriptomic signature translated to 
the proteome, we compared the mean gene expression 
and mean protein expression of genes located on chro-
mosomes 1p and 19q within Type I LGG (Fig. 4C). Linear 
regression between protein and RNA expression found 
low correlation for chromosome arms 1p  (R2 = 0.21), 1q 
 (R2 = 0.17), 19p  (R2 = 0.17), and 19q  (R2 = 0.23). Next, 
we calculated a combined z-score metric using proteins 
expressed along chromosomes 1p and 19q compared to 
normal brain. Using this metric, we found a significant 
decrease in the expression of 1p19q proteins in Type I 

Fig. 3 Oncoplot showing mutations identified in our in-house cohort of LGG. Histological and molecular subtypes are displayed above
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compared to Type II and III LGG (Fig. 4D). Interestingly, 
all three subtypes had significantly decreased expression 
of 1p and 19q proteins compared to normal brain.

Lastly, we wanted to compare the proteomes between 
CIC mutation status (WT, LOF, missense) within Type I 
LGG. Concordant with transcriptomic clustering, prot-
eomic clustering did not result in distinct clusters based 
on CIC mutation status or CIC protein expression, (Addi-
tional file 3: Fig. S3) and no differences were detected in 
canonical CIC target genes such as ETV4, ETV5, DUSP6, 
and SPRY4 between CIC mutation subgroups (Additional 

file 3: Fig. S3). Differential protein analysis (DPA) also did 
not identify any significantly expressed proteins between 
any of the CIC mutation statuses within Type I LGG 
(Additional file 16: Table S11).

LGG subtypes can be distinguished using a proteomic 
classifier
To delve deeper into the proteomic differences between 
the three LGG subtypes, we performed differential pro-
tein expression analysis between the groups (Type I 
vs Type II, Type I vs Type III, Type II vs Type III). DPA 

Fig. 4 A Heatmap and unsupervised clustering of proteins identified in our in-house cohort of LGG. B Boxplots comparing the expression of 
glioma biomarker proteins between normal brain and the 3 LGG subtypes. p-values correspond to * > 0.05, ** > 0.01, *** > 0.001 C Scatter plot 
comparing expression of proteins identified in chromosomes 1p, 1q, 19p, and 19q. Linear regression line is plotted. D Boxplot comparing the 
calculated 1p19q z-score between normal brain and the 3 LGG subtypes
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identified 24 (13 up, 11 down) in Type I vs Type II, 197 
(93 up, 104 down) in Type I vs Type III, and 46 (20 up, 
26 down) in Type II vs Type III, DE proteins (Fold 
change > 1.5, padj < 0.05; Fig.  5A and Additional file  17: 
Table S12). Due to the low amount of DE proteins identi-
fied between Type I vs Type II and Type II vs Type III, we 
performed pathway analysis using less stringent param-
eters (padj < 0.05). Pathway analysis identified increased 

expression of cell-adhesion proteins in Type I, increased 
expression of chromatin remodeling proteins in Type II, 
and increased expression of metabolic pathway proteins 
in Type III LGG (Additional file 5: Fig. S5 and Additional 
file 18: Table S13).

Next, to explore potential protein biomarkers for each 
subtype, we identified proteins that were differentially 
expressed and directionally concordant between at least 

Fig. 5 A Volcano plots showing differentially expressed proteins identified between Type I, Type II, and Type III LGG. B List of subtype specific 
proteins identified through differential protein analysis. Upregulated proteins are in red and downregulated proteins are in blue. C Boxplots 
comparing the protein expression of glioma and subtype specific proteins between normal brain and the 3 LGG subtypes. p-values correspond to 
* > 0.05, ** > 0.01, *** > 0.001. D AUC-ROC curves for the classification of LGG subtypes based upon the list of subtype specific proteins. Curves was 
generated using multinomial regression and tenfold cross-validation. E Upregulated protein pathways in subtype specific proteins in Type I and 
Type III LGG
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two differential comparisons (Type I vs Type II, Type I 
vs Type III, Type II vs Type III). This resulted in a list of 
54 proteins (Fig. 5B): 27 in Type I (11 up, 16 down), 2 in 
Type II (2 up), and 25 in Type III (17 up, 8 down). Sev-
eral known glioma markers were identified through this 
analysis such as Vimentin, Nestin, BCAT1, and S100A1. 
Depletion of BCAT1 has previously been described as 
an effective surrogate marker to IDH mutation, consist-
ent with our findings [39]. Expression of Vimentin and 
Nestin was found to increase stepwise between the three 
LGG subtypes while others showed increased (BCAT1, 
MUCL1, KCNN3) or decreased (S100A1, PRNP) expres-
sion in only one subtype (Fig. 5C). Using this list of pro-
teins, we trained a classifier using multinomial regression 
and tenfold cross-validation and found that Type I LGGs 
were easily distinguishable from both Type II and Type 
III LGG (AUC = 0.944 and 0.949; Fig. 5D). However, dif-
ferences between Type II and Type III LGG were not as 
easily distinguishable (AUC = 0.840) which is consist-
ent with the lack of Type II specific markers identified 
and the dispersed clustering of Type II LGG (Fig.  4A). 
Pathway analysis of Type I and Type III specific markers 
identified upregulation of brain development in Type I 
and upregulation of immune, inflammation, and wound 
healing in Type III LGG (Fig.  5E, Additional file  19: 
Table S14).

Discussion
Proteomics is one of the fundamental tools in pathology 
related to identifying protein biomarkers for the differ-
entiation of pathologies and traditionally probed using 
single protein assays such as immunohistochemistry. 
The continuing development and maturation of whole 
proteome studies using mass-spectrometry have opened 
doors to explore the proteomic landscapes that are 
innate to specific pathologies and allow for interrogation 
of pathway and protein susceptibilities on a large scale. 
While much has been discovered about the genome and 
transcriptome of low-grade gliomas (LGGs), very few 
studies have been published investigating the proteomic 
landscape. Here we present the largest proteo-genomic 
cohort, to date, of LGG (n = 54) that includes all 3 sub-
types (Type I: IDH mutant – 1p19q co-del, Type II: IDH 
mutant – 1p19q retained, and Type III: IDH wildtype). 
This cohort is also performed on FFPE suggesting that 
the challenges associated with fixation can be overcome 
thus easing the restriction of fresh frozen tissues and 
increasing the potential cohort size of future proteomic 
studies.

Transcriptomic analysis of TCGA LGGs revealed, 
unsurprisingly, strong transcriptomic signatures that 
were driven heavily by genomic features such as IDH 
mutation and 1p19q codeletion. Similarly, within Type 

I LGG, CIC mutant (LOF and missense) Type I LGG 
expressed higher levels of CIC target genes. However, on 
a global scale, CIC mutant Type I LGG did not cluster 
differentially compared to their CIC wildtype counter-
parts. The lack of differential clustering between the CIC 
WT and mutant Type I LGGs may suggest that there are 
additional mechanisms that can result in similar global 
transcriptomic changes, or that CIC mutations do not 
lead to a strong enough global change.

Turning towards proteomic analyses, we found that 
the distinct transcriptomic signatures we identified using 
TCGA samples did not translate as strongly into the pro-
teome, resulting in less robust clustering. Type II LGG 
displayed the most heterogeneity in clustering which may 
reflect their relation to Type I LGG through IDH muta-
tion but also the propensity of Type II LGG to undergo 
malignant transformation towards a Type III-like pheno-
type through modulation of the IDH1 locus [34]. Despite 
the lack of robust clustering, we were able to identify 
decreased expression of 1p19q proteins in Type I LGG and 
a list of 54 subtype specific protein markers. This list sur-
prisingly did not include any molecular markers routinely 
used in the clinic such as IDH1/2, ATRX, TP53, EGFR, or 
TERT. In Type I, we identified markers related to brain 
specific (PURA, ALDH7A2, ABAT) and non-specific 
(AK3, IDI1, VAT1L) metabolism suggesting there may be 
metabolic vulnerabilities that can be further explored in 
Type I LGG [40]. Previously identified vulnerabilities such 
as upregulation of BCAT1 in IDH wildtype glioma were 
also identified in our study [41, 42]. Using this list of sub-
type specific markers, we were able to build a subtype spe-
cific classifier using multinomial regression suggesting that 
a focussed approach is more effective in the proteomic 
space compared to a global approach in transcriptomics. 
Similar to the transcriptome, we did not identify any differ-
ential clusters or differentially expressed proteins between 
different CIC mutation statuses within Type I LGG. This 
may be due to post-translational methods of dysregulating 
CIC that require further exploration [34], and is consist-
ent with previous studies showing CIC protein expression 
is a better prognostic indicator compared to CIC mutation 
status [36].

Conclusion
In this study, we explore the transcriptomic and pro-
teomic landscape of LGG and further delve in the 
transcriptomic and proteomic effects of CIC muta-
tion on Type I LGG. Our analyses identify wide-scale 
transcriptomic signatures driven by IDH mutation and 
1p19q-codeletion that are not robustly translated into 
the proteome. While our proteomic analyses did not 
result in as robust signatures compared to transcrip-
tomics, we highlight the usefulness of focussed analyses 
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to detect 1p19q codeletion and identify a list of 54 sub-
type specific protein markers. We show that these 54 
protein markers are effective for subtype classification 
and thus may also be useful for further interrogation 
and validation. This study also highlights the feasibility 
of performing global proteomic studies using FFPE tis-
sue and report the largest cohort of LGG to date with 
molecular subtype information. Future studies could 
further explore the proteomic landscape between histo-
logical grades (2 vs 3 vs 4) and low-grade tumours that 
undergo malignant transformation into glioblastoma to 
uncover therapeutic vulnerabilities.
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