2012 Researcher Matthew Hebb

HSP27 as a New Molecular Target in Glioblastoma

matthew hebb brain tumour researcher

Matthew Hebb
Western University: London, Ontario


What does the title mean?

The study is looking at heat shock proteins as a potential new therapeutic target in glioblastoma multiforme tumours. 

Project Summary:

Glioblastoma multiforme (GBM) is a deadly brain cancer that remains without effective treatment. There isa critical need to identify new molecular targets in order to advance our understanding and treatment ofGBM.

Heat shock protein 27 (HSP27) is overexpressed in systemic cancers and in brain tumors, and provides unwanted protection to tumor cells that promotes their replication, spread and resistance to treatment. Numerous studies are ongoing to evaluate drugs that inhibit this protein in systemic cancers but little advancement has been made in the brain.

We have recently shown that HSP27 inhibitors markedly increase the sensitivity of GBM cell lines to chemotherapy, similar to that which has been reported in pancreatic, lung, breast, colon and other cancers.

The objective of this study is to now test these agents in fresh GBM cells obtained directly from neurosurgical patients. These efforts have important implications as an essential next step in determining the potential of HSP27 as a new therapeutic target in GBM.

Research Outcome:

This proof-of-concept study evaluated the antitumor impact of a direct electrical stimulation technique, termed intratumoral modulation therapy (IMT) on glioblastoma (GBM) cells. Materials and Methods: An in vitro IMT model comprised of a calibrated electrode to deliver continuous, low-intensity stimulation within GBM preparations. Viability and apoptosis assays were performed in treated immortalized and patient-derived GBM cells, and postmitotic neurons. IMT was delivered alone and with temozolomide, or gene silencing of the tumor-promoting chaperone, heat-shock protein 27 (HSP27). Results: GBM cells, but not neurons, exhibited >40% loss of viability, caspase-3 activation and apoptosis with IMT. Cell death was modest with temozolomide alone (30%) but increased significantly with concomitant IMT (70%). HSP27 silencing alone produced 30% viability loss, with significant enhancement of target knockdown and GBM cell death (65%), when combined with IMT. Conclusion: These findings warrant further evaluation of IMT as a potential novel therapeutic strategy for GBM.  Read more...


Share This

Featured Story

Kate's Mum's Story

"May 2006 is a month I will never forget. That was the moment that everything became before the cancer, and after the cancer. It was a mark in time that would forever change my family"... Read more about Kate's Mum's story from her diagnosis of glioblastoma in 2006 and how Mum has beaten the odds to still be here today.

Learn more


Roy and the Gamma Knife – A Happy Tale

I had headaches, almost daily, for 10 years or more. It was a rare day if I did not have a headache. I used to joke that I should own...

Learn more

Courtney’s Story of Stability

Stability. It’s a strange concept when you have what it known to be a progressive, life long illness. You hear the words, “Your tumour...

Learn more

Upcoming Events

  • 24/Jul/2018: Groupe de soutien virtuel: Un groupe de soutien virtuel pour personnes touchées par une tumeur... Learn more >
  • 25/Jul/2018: Toronto Support Group: Meets at Wellspring Westerkirk House at Sunnybrook, Toronto, ON... Learn more >
  • 29/Jul/2018: 11th Annual Black Diamond Car Show Presented by Thumbs Up: Black Diamond, AB... Learn more >
  • 02/Aug/2018: Ajax Support Group: Meets at St. Paul's United Church, 65 King's Crescent, Ajax, ON... Learn more >
View All Events >
Thank you to the donors whose contributions make this website and all programs, services and research possible.

Copyright © 2018 Brain Tumour Foundation of Canada. Charitable Registration #BN118816339RR0001